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Abstract
In recent years, personalized fabrication has received considerable attention because of the widespread use of consumer-level
three-dimensional (3D) printers. However, such 3D printers have drawbacks, such as long production time and limited output
size, which hinder large-scale rapid-prototyping. In this paper, for the time- and cost-effective fabrication of large-scale objects,
we propose a hybrid 3D fabrication method that combines 3D printing and the Zometool construction set, which is a compact,
sturdy, and reusable structure for infill fabrication. The proposed method significantly reduces fabrication cost and time by
printing only thin 3D outer shells. In addition, we design an optimization framework to generate both a Zometool structure
and printed surface partitions by optimizing several criteria, including printability, material cost, and Zometool structure
complexity. Moreover, we demonstrate the effectiveness of the proposed method by fabricating various large-scale 3D models.

CCS Concepts
• Computing methodologies → Shape modeling;

1. Introduction

The recent widespread adoption of consumer-level three-
dimensional (3D) printers spurred the growth of academic and in-
dustrial fabrication applications. However, several drawbacks, in-
cluding long production time, limited output size, and high mate-
rial costs, persist. Many approaches have been proposed to address
these shortcomings. To reduce production time and material costs,
modern 3D printers allow users to vary the fill rate. Furthermore,
various internal patterns have been proposed [LSZ∗14] to reduce
the amount of material used without sacrificing structural sound-
ness. In addition, some methods [LBRM12, HLZCO14, VGB∗14]
have been proposed for large-scale fabrication, most of which are
based on the principle of partitioning large objects into smaller
components that are compatible with the printer’s output size.

Large-scale fabrication using extant methods remains expensive.
To substantially reduce fabrication costs, we propose a hybrid fab-
rication method that integrates the use of 3D printing materials
for the external shape with the use of a supporting structure for
the internal volume. The inner structure must satisfy several cri-
teria; for example, the structure must be (1) easy to assemble, (2)
reusable, and (3) robust. These criteria ensure that the resulting fab-
rication is simple to build while also being structurally reliable.
Zometool [Dav07] satisfies these requirements for coarse fabrica-
tion. Moreover, Zometool has other favorable characteristics, such
as stability and lightness, which facilitate large-scale fabrication,
and structural modularity, which facilitates fast fabrication. In this
work, we develop a computational method that integrates 3D print-
ing with the Zometool structure to reduce the time and material
costs of large-scale fabrication.

For a given 3D shape, we design an optimization process to syn-
thesize the inner Zometool structure such that shape similarity and
structural complexity are optimally traded off. Through simulated
annealing, we effectively explore the large structure space. Next,
using the optimized Zometool structure, we hollow out the shape
to obtain the outer shell and partition such that several criteria, in-
cluding simplicity and printability, are satisfied. These criteria are
formulated as a single multiclass labeling problem and solved us-
ing a graph-cut algorithm [BK04]. We then design a particular type
of connector and optimize its positions for assembling the inner
Zometool structure and the outer shell.

This paper makes two primary contributions:

• We propose an optimization framework to synthesize the inner
Zometool structure that replaces solid printed materials in large-
scale fabrication.
• We design and print a special connector and optimize its layout

for effectively combining the inner Zometool structure and the
outer printed shell.

2. Related Work

2.1. Computational Fabrication

In recent years, computational fabrication has attracted con-
siderable attention in the fields of computer graphics and hu-
man-computer interaction [SBM16]. Numerous approaches have
been proposed for fabricating shapes that satisfy various objec-
tives (e.g., maintaining balance [PWLSH13, BWBSH14], reduc-
ing size [LBRM12], strengthening structural soundness [ZPZ13],
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and generating specific sounds [UPSW16]) while using vari-
ous materials and building blocks (e.g., Lego [LYH∗15], planar
slices [CPMS14], and interlocking puzzles [SFCO12, ACP∗14]).
A detailed review of these approaches is available in [BCMP18].

Despite the development of assisting tools and algorithms,
3D printers still have such drawbacks as long production time,
excessive material use, and limited output size. To reduce the
consumption of print materials, Huang et al. [HZH∗16] and
Wu et al. [WPGM16] have designed devices and algorithms that
print shapes in wireframe form. In addition, several studies have de-
veloped different types of internal structures, such as the skin-frame
structure [WWY∗13] and the honeycomb-like structure [LSZ∗14].
For the 3D printing of large structures, Luo et al. [LBRM12] de-
veloped an iterative planar-cut method with the aim of fitting de-
composed parts within the 3D printing volume while considering
factors such as assemblability and aesthetics. Yao et al. [YCL∗15]
proposed a level-set framework for 3D shape partition and packing.
Compared with the aforementioned works, our method fabricates
a shape using both Zometool structures and 3D-printed pieces,
thus reducing the fabrication time and cost given the reusability
of Zometool structures.

Several studies have focused on hybrid fabrication, for example,
CofiFab [SDW∗16], Universal Building Block [CLF∗18], and faB-
rickation [MIG∗14]. Our work primarily differs from [SDW∗16]
and [CLF∗18] in the use of Zometool for fabricating the inter struc-
ture. The advantages of Zometool are as follows: (i) Zometool is
easy to obtain and manipulate compared with the customized laser-
cut shapes used in CofiFab; (ii) Zometool elements are reusable,
making them cheaper than the laser-cut shapes; and (iii) Zome-
tool structures are relatively sparse, thus necessitating relatively
few building elements and enabling material savings. Different in-
ter structures necessitate the use of different processes and algo-
rithms. For example, the applications of faBrickation differ from
those of our method. In faBrickation, Lego bricks are used as the
main building blocks to realize shapes, whereas 3D-printed parts
are used to fill the smaller components that are difficult to build
using Lego bricks.

2.2. Zometool Design and Modeling

Zometool is a mathematically precise plastic construction set used
for building a myriad of geometric structures [Dav07]; it can be
used to visualize simple polygons as well as model complex struc-
tures such as DNA molecules. Zometool dates back to the 1960s,
when it was first used as a simple construction system inspired by
Buckminster Fulleresque geodesic domes. Its application has since
evolved to satisfy the requirements of versatile modeling. Although
Zometool can be used to construct complex structures, it is not an
intuitive tool for new users, and its use can also be time consuming.
Various tools have been developed to help users design Zometool
structures, such as vZome∗ and ZomeCAD1; these systems provide
multiple methods to grow structures. However, building a complex

∗ http://vzome.com
1 http://www.softpedia.com/get/Science-CAD/ZomeCAD.shtml

shape remains difficult because these systems do not provide sug-
gestions to the users, such as what item to use next.

To address these concerns, several studies have proposed auto-
matic construction through the use of computational methods. Zim-
mer et al. approximated and realized freeform surfaces automat-
ically by using Zometool. Zimmer and Kobbelt [ZK14] adopted a
growth strategy that entails the use of incremental panels to approx-
imate the desired surface without self-collisions.

3. Overview

Given a 3D shape M, the proposed method automatically gener-
ates an inner Zometool structure and outer 3D-printed shells. This
method has the following features:

1. Large Objects. The proposed method is designed for fabricating
large-scale objects whose volume exceeds the printing volume of
most current consumer-level 3D printers.

2. Fabricability. Each segment of the outer shell can be printed
such that it fits inside the volume of consumer-level 3D printers.

3. Assemblability. The inner Zometool structure can be easily
assembled and connected to the outer printed shells by using
specifically designed connectors.

4. Cost-effectiveness. Our method maximizes the volume of the
inner structure and minimizes the amount of printing materials
used.

Figure 1 illustrates our method. For a given input shape, we vox-
elize the inner volume of the input mesh to realize an initial Zome-
tool structure. The objective is to grow the Zometool structure such
that it maximizes the inner volume, thus reducing the amount of
printing materials necessary. To this end, we design an optimiza-
tion framework through simulated annealing and design several lo-
cal operations to explore the optimized Zometool structure space
(see Section 4).

Next, to print the outer shell with the appropriate shape, we (i)
partition the shape into pieces such that each piece fits inside the
printing volume, (ii) place connectors at feasible locations so that
the inner Zometool structure and the outer shell can be connected
robustly, and (iii) maintain the salient regions intact. We formulate
this partition problem as a multi-label problem and solve it by using
a graph-cut algorithm under the following considerations: each tri-
angle must be connected to its closest Zomeball, but the number of
partitions must also be reduced without sacrificing the integrity of
the salient regions. To further regularize the resulting partitions, we
apply a support vector machine (SVM) algorithm to determine the
hyperplane between different labels. We then use this hyperplane
as the cut plane to separate the mesh (see Section 5).

Before separating the mesh using the aforementioned cut plane,
we generate the inner surface by voxelizing the inner volume and
combine it with the outer mesh as the solid mesh. Subsequently,
we apply all the cut planes to the solid mesh and obtain the dis-
tinct pieces. Finally, we design a special connector and connect the
printed pieces to the inner Zometool structure to form the designed
large-scale object (Section 6).
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Figure 1: For a given input shape, we first optimize the inner Zometool structure (Section 4). Guided by the Zometool structure, we then
partition the outer shell (Section 5) and generate connectors for assembling them (Section 6). The final fabricated result is obtained by
assembling both assembled Zometool structure and printed outer shell.

4. Zometool construction

4.1. Introduction to Zometool

Zometool is
widely used as
an educational
toy that replicates
complex scien-
tific structures,
such as chemical
structures. The
rods in the stan-
dard Zometool system have three types of struts: blue for rectangle,
red for pentagon, and yellow for triangle. Each strut comes in three
lengths, with length here defined as the distance from the center
of a ball on one end to the center of a ball on the other end (see
inset). We denote (b0, b1, b2) as the three lengths of the blue struts;
similarly, (r0, r1, r2) and (y0, y1, y2) represent the red and yellow
struts, respectively. The ratio of the lengths follows the golden
ratio, γ = 1+

√
5

2 . For example, for the blue struts, b1 = b0 · γ and
b2 = b0 +b1. Moreover, the relative length ratio of the yellow and
blue struts and that of the red and blue struts differ: yi =

√
3

2 ·bi and

ri =
√

2+γ

2 ·bi. Each Zomeball has 62 slots, namely 30 rectangular,
12 pentagonal, and 20 triangular slots. Please refer to [Dav07] for
more details on the mathematical model of Zometool.

4.2. Initialization

Many complicated structures can be assembled using Zometool.
Nevertheless, the assembly complexity and time increase rapidly
with the number of Zometool items (i.e., struts and balls) used. A
simple and repeating unit structure is used to fabricate the initial
structure, following which the rest of the structure is built outward
from the initial structure to achieve a good fit with the outer surface.
After experimenting with different basic structures (e.g., cubes, tri-
angular pyramids, square pyramids, and pentagonal pyramids), we
select the cube as the unit building block for this study because it

has the shortest assembly time. The major difference between our
study and that of Zimmer et al. [ZLAK14] is that we choose b0
(the length of the shortest blue rod) as the edge length of the cube;
this is because the smaller is the cube, the higher is the fitting rate,
and the closer are the inner and outer surfaces (inset shows sample
initialization).

4.3. Problem Formulation

We measure the quality of the Zometool struc-
ture Z with energy E in terms of four quality
measurements:

E(Z) = wfid ·Efid(Z)+wreg ·Ereg(Z)
+wval ·Eval(Z)+wsim ·Esim(Z), (1)

We set w f id = 1.0, wreg = 100.0, wval = 1.0,
wsim = 1.0 for all examples in this paper.

4.3.1. Shape fidelity

To better represent the input shape S, the out-
ermost nodes must stay close to the surface
of S; that is, the distance from the outermost
nodes to the surface of S should be minimized.
Thus, the distance from Z to S is integrated
over the outermost nodes:

Efid(Z) =
1

|Nout | ·d2
norm

|Nout |

∑
i=1
‖pi−δ(pi)‖2 · (1+F(pi)), (2)

where Nout is the set of outermost nodes and δ(pi) is the point on
S nearest to the outermost nodes. The normalization factor dnorm
is set as b0 to retain the energy within [0,1]. We follow [ZLAK14]
and define the term F(p) as the forbidden zone that penalizes node
points lying too far away from the surface.

Forbidden Zone F(p) is defined as a quadratically increasing
function that is dependent on the distance between the node n and
the nearest triangle centroid on surface M when the distance is
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dmin

Fmax

 Fthick

dmax

Figure 2: Forbidden zone function F(p). Because Zometool ele-
ments that stay close to dmin are preferred, elements farther from
dmin are penalized.

within the range from dmin to dmax (as shown in Figure 2). We
choose appropriate parameters by conducting tests on different 3D
shapes. We thus identify the following set of parameters that pro-
duce elements that do not extrude out the forbidden zone across
all the tested shapes. F(p) is set as (i) a constant large penalty
(Fthick) when the distance is less than dmin to prevent the Zome-
tool elements from growing between the outer surface and dmin,
and (ii) Fmax when the distance exceeds dmax. By testing various
3D shapes, we found that the following set of parameters produce
results that do not extrude out of the forbidden zone for all the
tested shapes: dmin = 16.0 ( 1

3 length of b0) , dmax = 47.3 (length of
b0), Fmax = 70.0, and Fthick = 90.0; these values are thus used all
examples in this paper.

4.3.2. Regularity

On observing the assembling process of several complicated Zome-
tool structures, we discover two major states that slow down the
process: (i) the struts on a Zomeball are too close to each other
(i.e., the angles between the struts are too small), and (ii) the slots
used to connect the struts are spread out irregularly on the Zome-
ball. To address these concerns, we regularize the angles between
struts to be exactly 90◦ and penalize any angle that is too small or
too large (Figure 3)

Ereg(Z) =
S

∑
i=1

1
|Ni| ∑

s j∈Ni

(min(θi j)−
π

2
), (3)

where S represents the number of struts andNi represents the struts
adjacent to strut i. The resulting Zometool structure has a rela-
tively high number of repeated Zomeball patterns (the struts on
each Zomeball are placed at similar slots), and this considerably
reduces the assembling time.

4.3.3. Valence

For ease of assembly, we regularize the optimized Zometool struc-
ture such that it has good valence for simple structures (see Fig-
ure 4). The primary reason for regularizing valence number is
that an undesired Zomeball valence number (Figure 4 (c) and (d))
increases the possibility of element collision, which considerably

𝜃𝑚𝑖𝑛 = 90° 𝜃𝑚𝑖𝑛 > 90°

𝜃𝑚𝑖𝑛 < 90°

Figure 3: Regularity. We penalize configurations where the angle
between the struts stray far from 90◦.

reduces the optimization efficiency. Collided structures are con-
sidered to be invalid (because they can not be assembled) in our
method (this is discussed subsequently herein). We set the target
valence as 6 according to the initial cube structure, which mini-
mizes the complexity and maximizes the utility of each Zomeball:

Eval(Z) =
Nin

∑
i=1

(Vi−6)2

6
, (4)

where |Nin| denotes the number of internal nodes and Vi denotes
the valence of node ni ∈ Nin (Figure 4).

(a)

(b)

(c)

(d)

Figure 4: Valence. We encourage the valence of each Zometool
node to be 6 (as in configuration (a) and (b)). We penalize the va-
lence that is not 6 (configuration (c) and (d)).

4.3.4. Shape simplicity

To reduce the complexity of the Zometool structure, we limit
the number of Zometool elements. However, oversimplifica-
tion negates the effects of the shape fidelity energy discussed in
Section 4.3.1; that is, the desired shape cannot be adequately replicated.
For the optimal trade-off of shape fidelity and simplicity, we deter-
mine the target number of Zometool elements before optimization.
To this end, we run a random Zometool assembling process ten
times within the volume of the input shape. For each run, we record
the number of Zometool elements required to reach a predefined
shape similarity threshold between the Zometool structure and
the target shape M. We set the 90% of the average number of
Zometool elements as the final target item number (τ). For most
cases, this target number serves as the upper bound of the number
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of elements, and the simulated annealing optimization process is
always terminated before this target number is reached. Let |N|
represent the total number of nodes, and |S| represent the total
number of struts. Simplicity is measured as the difference between
the actual and target item numbers:

Esim(Z) =
1
τ
(|N|+ |S|− τ)2. (5)

4.4. Exploration Mechanism

Determining the Zometool structure that minimizes the energy
E(Z) (Eq. 1) is a nontrivial optimization problem because E(Z) is
nonconvex and contains global terms. Because an exhaustive search
is impractical, we adopt a more scalable strategy based on the sim-
ulated annealing algorithm [SFS02]. In a nutshell, this algorithm
executes a random exploration of the solution space by iteratively
perturbing the current solution with a certain probability depending
on the energy variation between the two solutions and a relaxation
parameter T . We describe our local perturbation operators and re-
laxation scheme as follows. Algorithm 1 details our optimization
algorithm.

Algorithm 1 Exploration mechanism

1: Input: Initialized Zometools Z̄,
2: relaxation parameter T = Tinit
3: Output: Optimized Zometoos Z
4: procedure EXPLORATION(Z)
5: repeat
6: generate Z′ from Z with a random local operation.
7: draw a random value p ∈ [0,1]

8: if p < exp(E(Z)−E(Z′)
T ) and CollisionFree(Z) then

9: update Z′← Z
10: end if
11: Update T ←C×T .Update temperature.
12: until T < Tend
13: end procedure

Local Perturbation Operation During the exploration, we pro-
posed six local perturbation operations (Figure 5) to construct the
Zometool structure by minimizing Eq. 1.

• InsNode This operator inserts a new node and two struts to split
the original strut.
• DelNode This operator deletes a node and two struts.
• InsStrut This operator inserts a single strut to connect two

nodes that are not directly linked.
• DelStrut This operator deletes a strut between two nodes that

are directly linked.
• InsBridge This operator inserts a new strut to merge two nodes

that are not directly linked (two nodes with connected path
length more than two).
• DelBridge This operator deletes a strut between two nodes with

connected path length more than two.

Operation validity The chosen operation at each iteration up-
dates the structure from the previous iteration. However, some up-
dates might introduce invalid structures, such as structures with
item collision. We detect collision by checking the (1) Zomeball

(a) (b)

(c) (d)

(f)(e)

Figure 5: We use six local operations during structure perturba-
tion. (a) InsNode, (b) DelNode, (c) InsStrut, (d) DelStrut, (e) Ins-
Bridge, and (f) DelBridge. Each operation is performed from the
left configuration to the right configuration.

to Zomeball, (2) strut to Zomeball, and (3) strut to strut distances;
if the distance is less than a certain threshold, the update is rejected.

4.4.1. Cooling schedule

The relaxation parameter T , referred to as temperature, controls
both the speed and quality of the exploration. Starting from an
initial temperature Tinit , we decrease the temperature, approaching
zero as the iteration tends to infinity. This process is referred to as
cooling, and various cooling schedules are available. Although the
logarithmic cooling schedule [SFS02] guarantees global minimum
convergence, we implement a geometric cooling schedule [HJJ03].
In our experiment, we set the initial temperature Tinit = 1 and apply
the decrease rate C = 0.99 after every 100 iterations.

5. Object Partition

Most consumer-level 3D printers have limited printing volumes.
To print large-scale objects, the objects must be decomposed into
smaller partitions. Conventional surface partition methods only ac-
count for surface features; however, we must also consider the re-
lationship between the outer surface partitions and the inner opti-
mized Zometool structure. Specifically, in this work, we place con-
nectors between the outer and inner structures in order to connect
them (see Section 6). We can simply compute the distance between
each triangle t and all nodes in Z and assign t to the nearest node
as its label. However, inconsistencies may arise among adjacent
triangles, engendering unsatisfactory visual effects and assembly
complexities because numerous small partitions might exist (Fig-
ure 6(a)).

To address this concern, we formulate the problem as a multi-
label graph-cut minimization problem. As each triangle t can po-
tentially correspond to different Zometool nodes, it gets assigned
data costs for different corresponding nodes. Given n elements,
k labels, and n · k costs, finding the minimum assignment is a
typical NP-hard combinatorial problem, which we solve using
Boykov [BK04].
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After partitioning the structure, we further regularize the bound-
aries between the partitions by performing multi-class clas-
sification; this process of seeking smooth boundaries ensures
easy assembly. This problem has been previously addressed by
Wang et al. [WZK16] and Alderighi et al. [AMG∗18]. We follow
[WZK16] and use an SVM [CV95] classifier to determine our
cut plane. We describe the formulation and implementation of a
Markov random field (MRF) problem and how to find the cut planes
in the following paragraph.

(a) (b) (c) (d)

Figure 6: (a) Result of nearest node classification (b) result of
graph cut, (c) cut-plane generated using an SVM classifier, and (d)
cutting result.

5.1. Surface Partition

5.1.1. Optimization energy

We compute the assignment function f that assign labels to each
triangle t, where t ∈ T , such that the labeling f minimize the fol-
lowing energy E( f ):

E( f ) = wdata ∑
t∈T

D(t, ft)+wsmoothness ∑
t,s∈N

ψt,s(t,s, ft , fs), (6)

where ft and fs are labels assigned to triangle t and s, andN is the
set of all pairs of triangles sharing edges. We set wdata = 1.0 for
all the shapes shown in this paper, and we use wsmoothness to control
the size of the partitions, which is crucial for limiting the size of the
partitions such that they fit within the 3D printing volume. Specif-
ically, we initialize wsmoothness as 10 and examine whether we can
fit all the partitions within the 3D printing volume. If not, we multi-
ply wsmoothness by 0.1 and repeat this process until all the partitions
fit into the desired volume. We optimize this function by using the
multilabel graph-cut algorithm proposed by Boykov [BK04]. In our
setting, the entire outer nodes ofZ form the complete possible label
set L. This E( f ) comprises two terms: data cost and smoothness.

Data cost. We measure how well a triangle t covers an outermost
node n ∈ Nout as data cost. This cost is simply defined as the dis-
tance between the centroid of the triangle t and the outermost node
n ∈ Nout .

D(t, ft) = log(d(t,n)). (7)

Noted that the set of possible ft is the set of node id of outermost
nodes.

Smoothness cost. This term measures the spatial consistency of

Figure 7: In the left-most column, we show optimized partitions
without introducing the user-guided saliency term. We can observe
that the partition cut through some salient features on the mesh. To
address this problem, the user annotates the region that they wish
to preserve (red region in the middle column). We then incorporate
an additional term in the original smoothness term to prevent the
annotated regions from separating into multiple parts (right-most
column).

neighboring elements.

ψt,s(t,s, lt , ls) =

{
0, if lt = ls,
− log(θt,s/π)ϕt,s +wsaliency ∗Esaliency(t), otherwise

(8)

where we set wsaliency = 5.0, and θp,q and ϕp,q are the dihedral
angle and the centroid distance between triangles p and q, respec-
tively. With the smoothness term, two adjacent triangles are likely
to have consistent labels. Each object has many salient regions that
the the partition seam must not go through (e.g., the eyes and nose
on the face in Figure 7). To preserve the integrity of the salient re-
gions, we ask users to draw the region that they wish to preserve,
and we formulate this requirement as part of the smoothness cost to
prevent the partition seams from cutting through the salient region
(see last column of Figure 7).

Esaliency(t) =

{
1, triangle is marked as salient region,
0, otherwise

(9)

5.1.2. Optimized partitions

We solve the labeling problem in Eq. 6 by using a graph-cut algo-
rithm and obtain 11 labels on the Maoi head object (Figure 6(b)).
Compared with the method that directly assigned the triangle to the
closest outermost node, our approach yields much smaller partition
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numbers (11 vs. 60 (Figure 6(a)), and each partition is of relatively
better shape and size.

5.2. Object Cut

To cut the physical object into pieces, we must find the cut
planes that separate the space occupied by the object. How-
ever, the boundaries between the optimized partitions are not
regular enough to be directly used as the separating plane
(see Figure 6(b) and the inset). It is very difficult to find the
plane in 3D space because of the varied plane normal vectors.
Moreover, the zig-zag partition boundaries intro-
duce additional complexities in the 3D printing
process; thus, we find a clean separating plane by
following [WZK16] and analogizing our problem
as a multiclass classification problem, which is
then solved using SVM. We use each triangle as
a data sample, with it’s location as the feature vec-
tor and the optimized label as it’s class. Briefly, the
SVM algorithm finds the best hyperplane, which
is the one that represents the largest separation,
or margin, between the two adjacent classes. Be-
cause we found that the hyperplanes obtained using SVM suffice
to cut the planes, we did not proceed with the subsequent step sug-
gested described in [WZK16] (Figure 6(c)).

6. Fabrication

The object to be printed should be a solid mesh. In our method, we
use the Zometool structure to fill in most of the inner volume while
retaining a predefined thickness of the outer shell. The minimum
thickness is dependent on the requirements of the 3D printer used.
To print each solid piece, we must obtain the inner surface and use
the original surface as the outer surface. The inner surface can be
generated in many approaches, such as by shrinking the mesh along
the vertex normals. However, these approaches often generate sur-
faces with flipped triangles that stick out of the outer surface. To
prevent this problem, we instead voxelize the original object and
remove the voxels whose center falls within the minimum thick-
ness from surface. We then use the outermost surface of the re-
maining voxels as our inner surface solid piece. As discussed in
Section 4.3.1, we penalize the Zometool elements that grow within
the range of dmin (which is our default thickness). For all the shapes
shown in this paper, no Zometool elements poked out beyond the
surface.

6.1. Generate connector

With the inner surface, we need to place connectors on it to connect
between inter Zometool structure and outer shells. Two potential
designs for building these connectors are:

1. Dig holes on the surface and use the Zometool struts to connect
both inter and outer structures (Figure 8 (a)).

2. Grow Zometool tenons on the inner surface (Figure 8 (b)).

We tried both designs, and as we experimented, we observed that
the generated support structures from the 3D printers hugely reduce
the quality of the digged holes. The reason is the printed holes are

usually filled with the support materials, and it is difficult to remove
all of them. Hence, we choose to grown tenons on the inner surface
with following method.

Grow tenons on the surface. Given it’s easier cleanup and more
robust structure, we use this design to connect the inner Zometool
structure and outer shell (see Figure 8 (b)). We restricted the grown
tenons have to be perpendicular to the inner surface in order to
achieve better structural robustness. And we decide how many
tenons on each outer shell with the following process: We shoot
rays from each admissible slot on a single Zomeball in the opti-
mized Zometool structure, and record whether it intersects with the
tested shell. Since the tenons are only generated perpendicular to
the inner voxel surface, it’s direction is basically axis-aligned. This
means that for each Zomeball, only 6 slots are admissible for each
tenon. We repeated this examination on all of 6 slots on each of
the Zomeball covered by this shell, and we find the directions that
are perpendicular to the inner surface and grow tenons along those
directions.

(a) (b)

Figure 8: Connector designs: (a) dig holes and (b) grow tenons on
inner surface. The materials in the dug holes can not be removed
entirely in (a), so the struts can not be inserted well.

7. Result

7.1. Experiment environment

We implement ZomeFab in C++ and Python on desktop PC with
3.4GHz CPU and 16GB memory. The computation time of Zome-
tool structure usually takes around 0.5 - 2.5 hrs due to the con-
vergence of the simulated annealing. The multi-label graph cut al-
gorithm takes around 2 mins for all shapes shown in the paper.
The outer surfaces are printed by Ultimaker 3, a low-cost FDM 3D
printer with 0.2m x 0.2m x 0.2m printing volume and PLA mate-
rial.

7.2. Evaluation

We evaluate the material cost and fabrication time between “Zome-
fab" and solid-printed object (denoted as “baseline" method). We
use CURA2, a slicer software for 3D printing, to simulate the fabri-
cation time and used materials for solid-printed object. Meanwhile,
we subdivide the shape using a octree, and stop the subdivision
once each sub-shape fit into the printing volume. To evaluate our
method, we report two different infill methods called “hollow" and
“solid". Shapes printed under “hollow" use only 20% infill rate,

2 https://ultimaker.com/en/products/ultimaker-cura-software
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where “solid" use 100% infill rate. Note that we only use 20% in-
fill rate to fabricate the results shown in this paper, and the “solid"
results are simulated using CURA.

Material cost. As shown in Table 1, our method greatly saves
materials from 24% to 64% under “hollow” setting, and from 68%
to 85% under “solid” setting. As expected that our method brings
more benefits when infill rate grows. The material cost are listed
as follow: 0.56 USD/meter, Zometool strut: 0.19 USD/strut and
Zomeball: 0.29 USD/ball for our experiments.

Fabrication time. We report printing time evaluation under sin-
gle 3D printer scenario and assembling time of zometool structure
in Table 1. The statistics show that the overall fabrication time,
i.e. printing time of outer pieces plus the assembly time of Zome-
tool structure, is on average 30% shorter than the baseline method
under “hollow” setting, and 74% under “solid” setting.

7.3. Zometool Use

Table 2 shows the quantity of Zometool struts and balls used in
each result. In Section 4, we use smallest blue struts to make the
zomecube as the unit structure in order to make the best-fit initial
structure. The bigger the object is, more smallest blue struts (b0)
will be used. We also observed that, blue struts and yellow struts
are more likely to be used interchangeably since we encourage reg-
ularity during simulated annealing optimization. Meanwhile, the
rule of Zometool indicates that the longest strut only can be re-
placed by one shortest and middle strut in the same color. So it
seldom introduces red struts into the structure, which resulted in
the used number of struts imbalance shown in Table 2. To ease the
assembling process of Zometool structure, we wrote a simple inter-
face that can highlight the connected struts for each ball. This can
greatly improve the efficiency of the assembling process.

8. Conclusion

In this paper, we propose ZomeFab, a hybrid fabrication method
that combines Zometool and 3D printing to fabricate a large-scale
3D object. We aimed at decomposing an input 3D object into a in-
ner structure and pieces of outer surface. By replacing the huge in-
ner space with Zometool from 3D printed materials, we can greatly
reduce the cost of 3D printing. And we retain the fine geometric de-
tail by printing the outer shell with 3D printer. With the reusability
of Zometool, the long-term cost of fabrication is greatly decreased.
We have demonstrated that our method is able to fabricate large-
scale object by physically replicating 5 objects.

Limitations and Future Work. There are many remaining chal-
lenges and opportunities for future research on large-scale fabrica-
tion. While our initial unit structure is simple and easy-to-assemble,
it’s size (4.7cm x 4.7cm x 4.7cm) prevents us to fabricate 3D ob-
ject with thin structure. Meanwhile, since Zometool is designed un-
der formal and strict mathematical formulation, the connection be-
tween two separated Zometool sub-structure might not exist within
the 3D object inner space. As a result, our method can not fabricate
3D object with two or more parts connected by thin structure that
our initial unit structure can not fit in. In the future, we would love
to investigate how to shrink the size of the initial unit structure, in
order to enable more complicated large-scale 3D object fabrication.
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Mesh Infill Method Fabrication Method
Single 3D Printer Fabrication Time (hours) Material Cost (USD) Efficiency (Saved)

3D printing Zometool (assemble time) Overall (sum) 3D printing Zometool Overall (max) Time Material

Moai
Hollow

Zomefab 293.97 2.5 296.47 82.56 70.57 153.13
31.70% 13.83%

Baseline 434.08 434.08 177.71 177.71

Solid
Zomefab 523.20 2.5 525.70 170.9 70.57 241.47

77.75% 65.11%
Baseline 2362.28 2362.28 692.07 692.07

Squirrel
Hollow

Zomefab 355.05 3.0 358.05 100.38 77.55 177.93
22.04% 21.74%

Baseline 459.28 459.28 227.37 227.37

Solid
Zomefab 643.65 3.0 646.65 213.96 77.55 291.51

76.57% 66.17%
Baseline 2759.72 2759.72 861.66 861.66

Doraemon
Hollow

Zomefab 356.60 4.0 360.60 101.38 76.34 177.72
37.88% 21.91%

Baseline 580.48 580.48 227.59 227.59

Solid
Zomefab 643.65 4.0 647.65 227.78 76.34 304.12

57.71% 64.25%
Baseline 1531.42 1531.42 850.79 850.79

Totoro
Hollow

Zomefab 273.68 3.0 276.68 72.32 61.48 133.80
27.76% 36.38%

Baseline 383.02 383.02 178.88 178.88

Solid
Zomefab 468.82 3.0 471.82 148.26 61.48 209.74

77.68% 68.09%
Baseline 2113.42 2113.42 657.31 657.31

Iron Man
Hollow

Zomefab 282.30 2.0 284.30 73.99 57.76 131.75
34.98% 34.12%

Baseline 437.25 437.25 199.97 199.97

Solid
Zomefab 477.03 2.0 479.03 149.67 57.76 207.43

80.65% 72.93%
Baseline 2475.22 2475.22 766.24 766.24

Table 1: ZomeFab’s performance on saving time & material time as compared to a baseline method.

Mesh
Zometool

Blue Red Yellow
Total struts Total balls

S M L S M L S M L
Moai 112 0 0 0 0 0 140 0 0 252 73

Squirrel 144 22 0 8 4 0 119 3 1 301 85
Doraemon 143 26 1 2 5 1 89 1 1 569 87

Totoro 95 0 0 0 0 0 137 0 0 232 60
Iron Man 93 0 0 0 0 0 124 0 0 217 57

Owl 115 0 0 0 0 0 159 0 0 274 70
Pig 61 12 0 10 8 0 53 6 0 150 47

Slime 132 0 0 0 0 0 182 0 0 314 80
Lion 78 0 0 0 0 0 101 0 0 179 50

Bunny 215 0 0 0 0 0 266 0 0 481 126

Table 2: Zometool element usage.
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15 cm

15 cm

15 cm

15 cm

15 cm

Table 3: We fabricated five shapes using our method, and show the printed pieces (1st column), inner Zometool structure (2nd column), and
assembled final results (3rd and 4th column). Noted that the scale of 2nd, 3rd, and 4th columns are the same.
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