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Figure 1: (a) To use the prior per-garment virtual try-on method [5], the user must wear a physical measurement garment and stand in front
of a black background. Furthermore, this method often synthesizes virtual try-on image with black gaps between the synthesized garment
and body parts, as highlighted in the red box. (b) Our proposed method eliminates the need for wearing a physical measurement garment by
introducing a virtual measurement garment. Additionally, we add a gap-filling module to improve the realism of the synthesized try-on image.
By combining these features with a robust segmentation network, our proposed pipeline enables users to perform high-quality virtual try-on in
more diverse environments.

ABSTRACT

The popularity of virtual try-on methods has increased in recent
years as they allow users to preview the appearance of garments
on themselves without physically wearing them. However, exist-
ing image-based methods for general virtual try-on provide limited
support to synthesize realistic and consistent garment images under
different poses, due to two main difficulties: 1) the dataset used to
train these methods contains a vast collection of garments, but they
lack fine details of each garment; 2) they synthesize results by warp-
ing the front-view image of the target garment in a rest pose, which
results in poor quality and detail for other viewpoints and poses.
To overcome these drawbacks, per-garment virtual try-on methods
train garment-specific networks that can produce high-quality results
with fine-grained details for a particular target garment. However,
existing per-garment virtual try-on methods require the use of a
physical measurement garment, which limits their applicability. In
this paper, we propose a novel per-garment virtual try-on method
that leverages a virtual measurement garment, which eliminates the
need for the physical measurement garment, to guide the synthesis
of high-quality and temporally consistent garment images under
various poses. Furthermore, we introduce a gap-filling module that
effectively fills the gap between the synthesized garment and body
parts. We conduct qualitative and quantitative evaluations against a
state-of-the-art image-based virtual try-on method and ablation stud-
ies to demonstrate that our method achieves superior performance in
terms of realism and consistency of the generated garment images.
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1 INTRODUCTION

In recent years, the demand for online shopping of fashion items has
significantly increased. However, many customers face challenges
in making appropriate purchase decisions, as they are unable to
determine whether a particular fashion item fits them or not. Various
virtual try-on methods have been developed to address this issue.
These methods are broadly categorized into 3D model-based and
2D image-based methods. 3D model-based methods [10, 22, 23,
25, 30] are effective in presenting the target garment from multiple
viewpoints and under various poses. However, these methods entail
a laborious 3D modeling process by expert designers, as well as
additional 3D measurements and high computational costs, which
limit their usability. On the other hand, image-based methods [4, 13,
15,19] do not have such limitations as they utilize real-world images.
Nonetheless, most image-based methods are trained on a general
dataset, and thus cannot generate fine details of a particular garment.
Moreover, they are constrained by their use of 2D static images and
fixed camera positions, which restrict their ability to fully convey
the 3D fit and style of a garment.

To overcome the aforementioned limitations of existing image-
based virtual try-on methods, Chong et al. [5] proposed a per-
garment virtual try-on method that focuses on garment-specific vir-
tual try-on rather than general virtual try-on. Their key idea is to
train the garment synthesis network on a garment-specific dataset
captured using a robotic mannequin. The dataset contains images
of the same garment across different body shapes, poses, and view-
points, which enables the network to learn the fine-grained details
of the target garment. Moreover, they leverage a physical measure-
ment garment as a proxy to capture the human pose and body shape,
which provides a strong prior for the synthesis of the target garment
images. However, this also limits the applicability of their method,
as it necessitates the person to wear a specially designed garment
for the input. In addition, their method suffers from the problem of
producing results with gaps due to the misalignment between the
measurement garment and the target garment, which compromises
the naturalness and realism of the results, as shown in Figure 1 (a).

In this paper, we present a novel per-garment virtual try-on frame-
work that leverages a virtual measurement garment which eliminates



the need for a physical measurement garment, as illustrated in Figure
1 (b). The virtual measurement garment is a skinned mesh that can
deform according to the estimated 3D human poses, thus serving
as a guide for synthesizing the target garment images. Firstly, we
estimate the 3D human pose from 2D images. Next, we deform the
3D virtual measurement garment according to the estimated human
pose and render it into a 2D image. The rendered image is fed into a
per-garment network to synthesize the target garment image whose
pose conforms to the person in the input image. Finally, we compose
the synthesized garment image with the input image and employ a
gap-filling network to fill the gap to produce the final result.

Our method achieves superior temporal consistency when applied
to videos, despite being an image-based approach that processes each
frame independently without any temporal smoothing. Compared
to general virtual try-on methods, our per-garment virtual try-on
method entails more complex dataset capturing and network training.
However, we argue that our target users are garment retailers who
aim to promote their products and have the resources to conduct
such processes. Moreover, our garment-specific method is less labor-
intensive than 3D model-based virtual try-on techniques, which
require professional 3D modeling, and can achieve superior results
than general image-based methods.

To evaluate the effectiveness of our method, we collected videos
of people doing try-on motions with arbitrary backgrounds for quali-
tative and quantitative evaluations. The experimental results show
that our method outperforms existing methods in terms of visual
quality and temporal consistency.

Our contributions can be summarized as below:

• A novel method for per-garment virtual try-on that utilizes
a virtual measurement garment as an intermediate represen-
tation to synthesize high-quality and temporally consistent
images of the target garment, without needing additional 3D
measurements. (Section 3.1)

• A novel gap-filling module that is designed to fill the gaps that
are created by the composition process of virtual try-on. To
the best of our knowledge, this is the first work that introduces
a dedicated gap-filling network for virtual try-on. (Section 3.4)

• We evaluate the effectiveness of several intermediate represen-
tations for garment image synthesis and demonstrate that our
proposed virtual measurement garment with a grid pattern is
the most effective. (Section 4)

2 RELATED WORK

3D model-based virtual try-on. 3D model-based methods [10,
22, 23, 25, 30] capture 3D measurement data (e.g., 3D human pose
and shape) and generate draped garments that conform to the mea-
surement data. Some early works [6, 17, 21, 31] apply physically-
based simulations to generate animations of garments in contact
with the body. While such approaches are capable of generat-
ing visually plausible results with detailed wrinkles, they suffer
from high computational expenses, and thus cannot be widely ap-
plicable. To reduce the computational cost of simulation, recent
works [2, 9, 11, 18, 22, 23, 25–27, 36] utilize data-driven methods
to produce garment animation and deformation. However, these
methods are not guaranteed to produce accurate results for out-of-
distribution inputs. Moreover, 3D model-based approaches necessi-
tate capturing the physical and material properties of the garment in
order to generate images that exhibit high realism and fidelity, which
poses a significant challenge and requires a lot of effort.
Image-based virtual try-on. Image-based approaches [4,13,15,19]
do not require any 3D measurement data, thus are more widely ap-
plicable than 3D model-based methods. The pioneering work of
CAGAN [15] first tackled the task of swapping fashion items on

human images using a learning-based method. VITON [13] intro-
duced a coarse-to-fine synthesis strategy to enhance the quality of
the output and applied thin-plate spline (TPS) transformation to align
the target garment with the corresponding body region. To preserve
details of the target garment, CP-VTON [33] introduced a geometric
matching module to learn the TPS transformation parameters explic-
itly. VTNFP [39] and ACGPN [38] utilized a body segmentation
map prediction module to predict semantic layout, which provides
critical information for image synthesis and is very beneficial for
preserving clothing and body part details. VITON-HD [4] proposed
alignment-aware segmentation normalization and generator to han-
dle misaligned regions and preserve details of the target garment to
synthesize high-resolution virtual try-on images. HR-VITON [19]
further eliminates the pixel-squeezing artifacts that occur in VITON-
HD by unifying the garment warping and segmentation generation
stages. However, existing image-based virtual try-on methods often
fail to synthesize target garments with fine-grained details, as they
train the garment synthesis networks on a general dataset rather
than a garment-specific dataset. Furthermore, these methods tend to
produce unsatisfactory results for target garments that are not seen
during training.
Video virtual try-on. The goal of video virtual try-on is to synthe-
size realistic and temporally consistent videos of a person wearing
the target garment, based on image-based virtual try-on methods
Previous methods, such as FW-GAN [7] and FashionMirror [3],
utilize optical flow as a post-processing method to smooth the flicker
between adjacent frames. However, the flicker artifacts still ex-
ist after smoothing. To further improve the temporal consistency,
ClothFormer [16] proposed to use a two-stage warping module that
predicts dense flow mapping to synthesize the target garment se-
quence with improved spatio-temporal consistency. However, these
methods rely on a large dataset of video virtual try-on for training,
which is challenging to collect. To date, only one video virtual try-on
dataset, VVT [7], is publicly accessible. The lack of video dataset
hinders the advancement of video virtual try-on techniques.

3 METHOD

In this section, we present our per-garment virtual try-on method
with a virtual measurement garment. Figure 2 shows an overview of
our proposed method. Our method consists of two main components:
a Virtual-to-Target (V2T) network and a Gap-Filling (GF) network.
The V2T network learns to translate the appearance of a virtual
measurement garment, which is a 3D model of a generic garment
that can be deformed and rendered according to the 3D human pose,
to the appearance of the target garment. The GF network learns to
inpaint the missing regions in the synthesized image caused by the
removal of the original garment.

To synthesize the appearance of a target garment on a person from
an input image, we first employ a pre-trained pose estimator to infer
the 3D human pose (Figure 2(b)) from the input image. Second, we
use the estimated pose to deform and render a virtual measurement
garment (Figure 2(c)) that matches the body shape and pose of the
person. Third, we apply the V2T network (Figure 2(d)) to generate
a realistic image of the target garment (Figure 2(e)) based on the
rendered image. Fourth, we combine the generated image with the
input image, where the original garment has been segmented and
removed using a garment segmentation tool, FashionFormer [37].
Finally, we fill in the black gap in the combined image using the GF
network (Figure 2(h)), which performs gap-filling inpainting. In the
training stage, we train the V2T network using paired images of the
virtual measurement garment and the target garment. To train the
GF network, we use images with black gaps and their corresponding
masks, which are generated by erasing specific regions of the arms
and areas near the periphery of the upper body garment in the images.

Given a reference person image I ∈ RH×W×3, H and W denote
the height and width of the image. Our method aims to synthesize an
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Figure 2: Overview of our method. During the inference stage, we first estimate (b) the 3D human pose of (a) the input image using a
pre-trained pose estimator. Then, we deform and render (c) the virtual measurement garment according to the estimated pose. Next, we feed
the rendered image to (d) the Virtual-to-Target (V2T) network to obtain the synthesized image of the target garment. We then compose the
synthesized image with (f) the input image from which the original garment has been removed using a pre-trained segmentation model. Finally,
we inpaint the black gap in the composed image using (h) the Gap-Filling (GF) network.

image IT ∈ RH×W×3 that depicts the same person wearing the target
garment. Let θ be the estimated 3D human pose from the input
frame I, the virtual measurement garment model V̄ is then deformed
to conform to the estimated pose V. Following this deformation, the
deformed virtual measurement garment model is rendered to produce
a 2D image Iv. Subsequently, the rendered virtual measurement
garment image Iv is converted to the target garment image IT via
the Virtual-to-Target (V2T) network, expressed formally as:

IT =V 2T (Iv) (1)

Subsequent to the synthesis of the target garment image IT , it
is composed with the input frame Ir, from which the original gar-
ment has been removed, yielding a composite image featuring a
discernible gap. The resultant composite image and the correspond-
ing gap mask are denoted as Ig and Mg respectively, which are then
input into the Gap-Filling (GF) network to generate the final output
image with the gap effectively and aesthetically filled:

Ĩ = GF(Ig, Mg) (2)

In Section 3.1, we provide a concise overview of the construction
of the virtual measurement garment model. Section 3.2 offers an in-
depth account of the target garment synthesis. Section 3.3 presents
specific aspects of the composition procedure. Lastly, Section 3.4
presents the details of the gap-filling module designed for gap filling.

3.1 Virtual measurement garment
To build the virtual measurement garment, we first build a 3D tem-
plate garment mesh that can represent various types of short-sleeved
garments, whose vertices in A-pose can be represented as V̄ ∈ RN×3,
with N representing the number of vertices. The skinning matrix
W is obtained by deforming an SMPL model with an average body
shape to the A-pose, and then projecting each vertex of the virtual
measurement garment onto the nearest triangle of the SMPL model.
The skinning weight of each vertex is then computed by barycentric
interpolation. In addition, we apply Laplacian smoothing to the skin-
ning weights to eliminate artifacts caused by skinning. Following
the approach of [5], we texture the virtual measurement garment
with a grid pattern from [12] to enhance the quality of synthesized
garment images.

Our proposed virtual measurement garment shares the same skele-
ton as the SMPL model, allowing it to be easily animated by the
SMPL pose parameters. Let θ be the estimated 3D human pose
from the input frame, the virtual measurement garment model is

then deformed to conform to the estimated pose, resulting in a set of
new vertices represented as:

V = LBS(V̄,θ ,W ) (3)

where LBS(·) denotes the Linear Blend Skinning deformation.

3.2 Target garment synthesis

V2T network

Virtual measurement 
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Figure 3: The Virtual-to-Target (V2T) network is trained on the
paired images of the virtual measurement garment and the target
garment.

Training stage. The Virtual-to-Target (V2T) network performs the
translation from rendered virtual measurement garment images to
the corresponding target garment images. This network adopts the
same architecture as pix2pixHD [34], an image-to-image translation
method. The V2T network is trained for a specific target garment
captured using a robotic mannequin, as illustrated in Figure 3, allow-
ing it to learn the detailed appearance of the target garment under
various poses. This implies that our method cannot handle unseen
target garments, which limits its generality. However, we argue that
this trade-off improves the quality of the synthesized images, as we
demonstrate in our experiments.
Inference stage. To synthesize the target garment image that con-
forms to the user’s body orientation and pose, we first employ
BEV [32] to estimate the 3D human pose from the input frame,
which is denoted as θ ∈ R24×3. Next, we deform the virtual mea-
surement garment according to the estimated pose parameters. Fol-
lowing the deformation, the virtual measurement garment model is
rendered to produce a 2D image:

Iv = R(V) (4)



where R(·) denotes the rendering function, V represents the vertices
of the deformed virtual measurement garment.

Subsequently, the rendered virtual measurement garment image
Iv is transformed to the target garment image IT via the pre-trained
V2T network, expressed formally as:

IT =V 2T (Iv) (5)

Data preparation. The original per-garment try-on method [5] used
a motor encoder for generating paired images of the target garment
and the virtual measurement garment is illustrated in Figure 4 (a).
This method estimates the joint angles and camera pose from the mo-
tor encoder. However, we observe that the camera pose inferred from
the motor encoder is inaccurate and leads to significant misalignment
between the target garment and the rendered virtual measurement
garment. To address this issue, we propose a reconstruction-based
method that estimates the camera pose by COLMAP [28, 29] and
relies on the motor encoder for joint angles, as shown in Figure 4b.
Our proposed approach achieves a significant improvement in the
alignment quality.
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(a) Motor encoder-based (baseline method [5])
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Figure 4: This figure illustrates (a) the baseline method [5] and
(b) our proposed method of generating the paired images of the
virtual measurement garment and target garment for training the V2T
network. The baseline method estimates the joint angles and camera
pose from the motor encoder annotation, whereas our proposed
method leverages both the motor encoder and the reconstruction
results obtained by COLMAP [28, 29] to estimate the joint angles
and camera pose respectively.

3.3 Composition
To seamlessly blend the synthesized garment image with the input
frame, we adopt a three-step procedure. First, we leverage Fashion-
Former [37] to extract and erase the upper body garment from the
input frame. Second, we apply Self-Correction-Human-Parsing [20]
to segment the human body parts in the frame, which allows us to
preserve the correct occlusion relationship between the synthesized
garment and the human body. Third, we compose the synthesized
garment image, denoted by IT , with the input frame, denoted by Ir,
from which the original garment has been removed.

To ensure the correct occlusion relationship between synthesized
garment and body parts in the composite image, we utilize the masks
represented as boolean matrices with size H ×W . The mask of the
synthesized garment is denoted by Ms, the mask of the original
garment by Mo, and the mask of arm skin by Ma. We define Mc as:

Mc = ((¬Ms)∨Ma)∧Mo (6)

Then we have the composite image with gaps Ig:

Ig
i, j =

{
Ir
i, j, if Mc

i, j is True
IT
i, j, if Mc

i, j is False
(7)

3.4 Gap filling

GF network

Image with gap & mask of gap Ground-truth of gap filling 

Figure 5: The Gap-Filling (GF) network is trained on the paired im-
ages of try-on images with and without gaps and their corresponding
masks.

Training stage. The Gap-Filling (GF) network, which follows the
architecture design of [14], is responsible for inpainting the gaps
produced in the composition step of the synthesized target garment
IT and the input frame I. As illustrated in Figure 5, the network
receives as input the try-on images with gaps and the corresponding
gap masks, and produces as output the try-on images without gaps.
This training procedure enables the GF network to learn how to
generate realistic pixels for the missing regions.
Inference stage. After the composition, we obtain the fused frame
and the gap mask. To remove the black gap in the fused frame, we
feed both the fused frame and the gap mask to the GF network to fill
in the black gap.
Data preparation. To train the GF network that can fill the gap in
composite images of virtual try-on, we need to synthesize realistic
images with missing regions that resemble the composite images of
virtual try-on. We leverage existing virtual try-on datasets, Deep-
Fashion2 [8] and VITON-HD [4], as the ground-truth for the gap-
filling task. We employ FashionFormer [37] and Self-Correction-
Human-Parsing [20] to extract the mask of the upper body garment
and arms from the input image, and then we generate the gaps by
applying morphological operations on the mask.

4 EXPERIMENTS

4.1 Experiment setup
Dataset for evaluation. To demonstrate that our method generates
results with temporal consistency, we require a video dataset for the
evaluation process. Existing video virtual try-on methods use the
VVT dataset [7] for evaluation. However, this dataset is not suitable
for our method, because our method requires multi-view images of
the target garment for training, while the VVT dataset only provides
front-view images of the target garment. Therefore, we collected
a new dataset that meets our requirements. Our dataset consists of
several videos of people wearing target garments that have been used
for training our method.
Training. The V2T and GF networks are trained separately and then
combined together to generate the virtual try-on images. The V2T
network is trained with a learning rate of lr = 0.0001 for 10 epochs,
using the Adam optimizer with β1 = 0.9 and β2 = 0.999. We also
apply random affine transformation for data augmentation. The
GF network adopts the same training settings as the V2T network.
Both networks take approximately one day to complete the training
process on an NVIDIA A100 GPU.



4.2 Alternative methods
We conduct comparisons of our proposed method with HR-VITON
[19], a state-of-the-art image-based method for virtual try-on, and
two alternative methods that we use for ablation study:

• DP: This method adopts the part-specific UV coordinates es-
timated by DensePose [24] as an intermediate representation
for garment synthesis, instead of using a virtual measurement
garment. The garment synthesis pipeline is presented in Figure
6 (a). The purpose of this method is to evaluate the role of the
virtual measurement garment in the proposed framework.

• TF: This method employs a virtual measurement garment with-
out any grid pattern texture as an intermediate representation
for garment synthesis, as shown in Figure 6 (b). The aim of
this method is to assess the impact of the grid pattern texture
on the quality of the synthesized images.

Input UV map from 
DensePose

Target garment

Input 3D human 
pose Virtual measurement 

garment without 
texture

Target garment

(a) Pipeline of DP

(b) Pipeline of TF

Figure 6: Two alternative methods for ablation study. (a) DP method
uses UV map estimated by DensPose [24] as an intermediate rep-
resentation for the garment synthesis. (b) TF method uses a virtual
measurement garment without any grid pattern texture as an inter-
mediate representation for the garment synthesis.

4.3 Results
Qualitative comparison. Figure 7 presents a qualitative com-

parison of the image quality among HR-VITON, DP, TF, and our
proposed method. It can be observed from the figure that our method
effectively preserves the fine details and the overall shape of the
target garment, whereas the other methods introduce noticeable
distortions.

In addition, we compare the temporal consistency of our method
with HR-VITON, DP, and TF in Figure 8 (also see supplementary
video). As can be seen from this figure, our method preserves
the shape and appearance of the target garment across different
frames, while the other methods suffer from noticeable distortions
and flickering. Therefore, our method achieves superior temporal
consistency compared to other methods.

Quantitative comparison. Figure 9 illustrates our quantitative
evaluation procedure. We capture videos of people wearing the
physical target garment and use different virtual try-on methods to
replace it with a synthesized target garment. We then compute the
similarity between the input and output frames using quantitative
metrics. We apply quantitative metrics for both image quality and
temporal consistency. For image results, we employ the structural

similarity (SSIM) [35] and the learned perceptual image patch simi-
larity (LPIPS) [40] to evaluate image quality. For video results, we
use the Video Frechet Inception Distance (VFID) to measure visual
quality and temporal consistency in the unpaired setting, and both
temporal and spatial features are extracted by a pre-trained video
recognition CNN backbones: I3D [1].

The quantitative results of our method and other methods are pre-
sented in Table 1, where we compare the image quality and temporal
consistency metrics. It can be seen that our method achieves the best
performance in all aspects, indicating that our method can benefit
video virtual try-on research by effectively maintaining temporal
consistency.

Table 1: Quantitative comparison on our collected video dataset.
For SSIM, a higher value indicates better image quality. For LPIPS
and VFID, a lower value implies better image quality and temporal
consistency.

Method SSIM ↑ LPIPS ↓ VFID ↓

DP 0.874 0.065 5.982
TF 0.881 0.057 4.156

HR-VITON [19] 0.855 0.081 10.091
Ours 0.886 0.056 3.441

Efficiency comparison. To evaluate the efficiency of our pro-
posed method, we compare it with HR-VITON [19]. Both meth-
ods are implemented using Pytorch and run on a PC with one
NVIDIA A100 GPU and AMD EPYC 73F3 16-Core Processor
CPU. We use the official implementation 1 of HR-VITON for the
comparison. Since HR-VITON only supports an output resolution of
1024×768, we test our method at 3 different resolutions: 512×512,
1024×1024, and 2048×2048. This way, we can demonstrate the
scalability and robustness of our method in terms of efficiency.

Table 2: Comparison of efficiency. The data presented in this table
are the average elapsed times for processing one frame, measured in
seconds.

Method Resolution Elapsed time (s)

HR-VITON [19] 1024×768 37.06
Ours 512×512 0.67
Ours 1024×1024 0.71
Ours 2048×2048 0.81

The efficiency comparison between our method and HR-VITON
is presented in Table 2. It can be observed that our method achieves
a significant improvement over HR-VITON in terms of efficiency.

4.4 Dataset requirement analysis
Unlike general image-based virtual try-on methods, our method
requires a per-garment dataset for each particular target garment.
According to [5], a per-garment dataset contains 83,750 images,
and the capturing process using the robotic mannequin takes around
four hours for each target garment.

To investigate the minimum number of images required for a per-
garment dataset, we train V2T networks on various downsampled
datasets and compare the results qualitatively and quantitatively.
We downsampled the original dataset uniformly by ratios of d =
1,1/2,1/4,1/8, . . . ,1/16384, and then replicating the remaining

1https://github.com/lastdefiance20/TryYours-Virtual-Try-On
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Figure 7: Image quality comparison with HR-VITON [19] and two alternative methods, DP and TF, for ablation study. DP is the method that
uses the UV coordinate map estimated by DensePose as an intermediate representation, as shown in column (e). TF is the method that uses a
virtual measurement garment without texture as an intermediate representation, as shown in column (f). Our method preserves the details of the
target garment and exhibits less distortion than other methods.

Input frame

DP

HR-VITON

TF

Ours

Figure 8: Temporal consistency comparison with HR-VITON [19] and two alternative methods, DP and TF, for ablation study. The first row
shows the input frames that are adjacent frames extracted from a video. Our method achieves superior temporal consistency compared to other
methods.

images by 1/d times to preserve the dataset size. We keep the
other training parameters unchanged across different datasets. We

showed the qualitative and quantitative results in Figure 10 and
Figure 11. In Figure 11, we can observe that the visual quality and
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Figure 9: Illustration of how we conduct quantitative evaluation. We
capture videos of people wearing the physical target garment and
use virtual try-on methods to replace it with a synthesized target
garment. We then measure the similarity between the input and
output frames using quantitative metrics.

temporal consistency decrease significantly after d < 1/512. The
experimental results demonstrate that our V2T network achieves
satisfactory performance with a subset of the full dataset. However,
the full dataset remains useful for more sophisticated networks that
can exploit its rich information.

Figure 10: Some results obtained from V2T networks trained on
diverse downsampled datasets, where the downsampling ratio d
varies. The figure illustrates the impact of different downsampling
levels on network performance.

5 CONCLUSION

In this paper, we present a novel per-garment virtual try-on method
that utilizes a virtual measurement garment. Our method differs
from existing image-based and per-garment virtual try-on methods
in that it employs a virtual measurement garment model to guide
the synthesis of the target garment under various poses, without
requiring additional 3D measurements. Moreover, our method can
generate high-quality and temporally consistent garment images,
even when each frame is processed independently. Our main tech-
nical contributions are: (1) the introduction of the virtual measure-
ment garment; (2) the introduction of the gap-filling module; and
(3) reconstruction-based registration. We conduct qualitative and
quantitative experiments to show that our method surpasses the state-
of-the-art image-based virtual try-on method in terms of quality and
temporal consistency. Furthermore, efficiency comparison reveals
that our method is significantly faster even when setting the resolu-
tion higher than the existing method. We also perform an ablation
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Figure 11: This figure illustrates the relationship between quantita-
tive metrics and − log2 d, where d denotes the downsampling ratio.
Significant image quality and temporal consistency degradation are
observed when d < 1/512.

study to validate the effectiveness of components of our method.
Our current method has the following limitations that we plan to

address in the future:

Limited garment types support Although Our method can
be applied to long-sleeve garments by constructing a virtual mea-
surement garment model with full arms, there is no per-garment
dataset available for long-sleeve garments. The reason is because
the existing robotic mannequin from [5] has only upper arms and
cannot capture images of long-sleeve garments. In the future, we
plan to develop a new robotic mannequin with full arms to overcome
this problem.

Inability to depict the fittingness. Our method cannot accu-
rately depict how well a target garment fits the user. This is because
we rely on a simple assumption that the user has an average body
shape, which may not reflect the actual body shape of the user. Esti-
mating precise body shapes from 2D images is inaccurate because
garments draped on people conceal their body shape. A possible
future direction would be to develop a learning-based method to
estimate the body shape from user input, such as weight, height, and
gender.

Lack of user-garment interaction. Our method does not sup-
port user-garment interaction, such as stretching or pulling the target
garment. This is because we use a virtual measurement garment
that is not physically attached to the user, unlike the physical mea-
surement garment used in [5]. A possible future direction would be
to run cloth simulation for the virtual measurement garment and to
use off-the-shelf gesture recognition tools to identify if the user is
interacting with the garment by grabbing.

Inability to capture time-dependent appearance. Our
method uses a single frame of the virtual measurement garment
as input to the garment synthesis network. Consequently, it cannot
generate time-dependent behavior of the garment from a sequence
of movement. To address this limitation, future work could involve
collecting a new dataset with temporal annotations, and training a
recurrent network to learn the time-dependent appearance of the
garment.

Inability to handle illumination difference. The proposed
method does not account for the difference in lighting conditions
between the training and inference stages, which affects its ability



to synthesize the correct appearance of the target garment according
to the user’s lighting condition. A possible solution to ensure the
realism of the target garment’s appearance is to capture its material
parameters and measure the user’s lighting condition. However, this
solution would require costly equipment and restrict its applicability.
An alternative and more affordable way to address the issue of light-
ing difference is to apply image harmonization techniques for image
composition.
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