
Generating Font Variations Using Latent Space Trajectory
Sotaro Kanazawa

kanazawa-sotaro317@g.ecc.u-tokyo.ac.jp
The University of Tokyo

Tokyo, Japan

I-Chao Shen
jdilyshen@gmail.com

The University of Tokyo
Tokyo, Japan

Yuki Tatsukawa
tatsukawa-yuki537@g.ecc.u-tokyo.ac.jp

The University of Tokyo
Tokyo, Japan

Takeo Igarashi
takeo.igarashi@gmail.com
The University of Tokyo

Tokyo, Japan

Ours

GT

Baseline

Ours

(d)
Light

GT

Baseline

Input

Bold

Ours

GT

Baseline

Ours

GT

Baseline

Input

WideNarrow
(e)

A A A A A

A A A A A

A A A A A

100 300 500 700 900

0 -2 -4 -6 -8

50 75 100 125 150

Weight

Width

Slant

(a) (c)

WideNarrow
Input

BoldLight
Input

(b)

Figure 1: (a) Examples of variable fonts. There are several axes of font properties, such as weight, width, and slant. (b) Font
variations for weight axis generated by our method. (c) Font variations for width axis generated by our method. (d) (e)
Comparison between our method (Ours) and the baseline methods (Baseline) (d) for weight axis (The baseline method is
morphological transformation) (e) for width axis (The baseline method is horizontal scaling). Both for (d) and (e), GT refers to
bitmap font variations from an existing variable font.
ACM Reference Format:
Sotaro Kanazawa, I-Chao Shen, Yuki Tatsukawa, and Takeo Igarashi. 2024.
Generating Font Variations Using Latent Space Trajectory. In SIGGRAPH
Asia 2024 Posters (SA Posters ’24), December 03-06, 2024. ACM, New York,
NY, USA, 2 pages. https://doi.org/10.1145/3681756.3697933

1 INTRODUCTION
Fonts are essential for conveying information with character, and
various kinds of fonts exist around you. Sometimes, you change
font properties to achieve more effective communication using
them. You can change fonts into bold and italic ones in tools such
as PowerPoint. However, you can only change the parameters of
the properties into fixed ones. Fonts that have properties with
fixed parameters in this way are called static fonts. It is desirable
to change the parameters continuously to enable a more flexible
design. To solve this problem, fonts that allow you to freely change
the parameters of font properties, called variable fonts, have rapidly
spread in recent years (Figure 1 (a)). These fonts are available in
various design tools, such as Adobe Illustrator.

However, professional typeface designers currently design vari-
able fonts, and the design process is too detailed and takes too
much time [Scheichelbauer 2024]. Specifically, they first have to
design master fonts at both ends (For example, when they design
variable fonts for the weight axis, they have to create the lightest

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
SA Posters ’24, December 03-06, 2024, Tokyo, Japan
© 2024 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-1138-1/24/12
https://doi.org/10.1145/3681756.3697933

and boldest fonts) in every detail. Then, they interpolate these two
master fonts. The problem is that they have to repeat this process
for each character and each attribute. Therefore, the entire process
becomes labor-intensive and time-consuming.

In this way, the design process of variable fonts is a heavy burden
on typeface designers. At the same time, the design process of
static fonts is also too detailed and time-consuming. Therefore,
these days, research on font generative models, generative models
that can automatically generate static fonts, is becoming more
and more popular [Jahanian et al. 2020]. In this study, to assist in
designing variable fonts, we extend these font generative models
to the automatic generation of variable fonts by utilizing the latent
space trajectory of font generative models.

We demonstrated that our method can generate high-quality
bitmap font variations for multiple axes (Figure 1 (b) (c)).

2 METHOD
Our proposed method is to generate bitmap font variations from
the bitmap of a single-character static font. We pre-train a font
generative model with Roman static fonts. Our method utilizes DG-
Font [Xie et al. 2021] as the font generative model. We provide the
bitmap of a single-character static font as input to both style and
content encoders of DG-Font. First, we optimize the direction of a
trajectory in the latent space of DG-Font according to the desired
attribute. After that, we map the input bitmap of the static font to
the latent space with the encoder of DG-Font. Finally, we move
the mapped latent vector on the trajectory corresponding to the
desired attribute and generate bitmap font variations.

Regarding the optimization of a trajectory in the latent space,
we leverage the method similar to [Jahanian et al. 2020]. Before the

https://orcid.org/0009-0003-1339-4934
https://orcid.org/0000-0003-4201-3793
https://orcid.org/0009-0003-5128-8032
https://orcid.org/0000-0002-5495-6441
https://doi.org/10.1145/3681756.3697933
https://doi.org/10.1145/3681756.3697933


SA Posters ’24, December 03-06, 2024, Tokyo, Japan Sotaro Kanazawa, I-Chao Shen, Yuki Tatsukawa, and Takeo Igarashi

Generated Bitmap 
Font Variations

E E E E E

Decoder

Latent Space

Direction

Encoder

EInput

Bitmap

Reference Bitmap

Font Variations

Input

Bitmap

A A A A A

Generated Bitmap 
Font Variations A A A A A

Decoder

Latent Space

Direction

Encoder Frozen

(a) (b)

Figure 2: (a) The process of optimizing the direction of a latent
space trajectory. We first prepare rasterized variable fonts as
reference font variations. Then, we move the parameter of
reference font variations to a certain degree 𝛼 . At the same
time, we move the latent vector mapped from the middle
instance of reference font variations to the same degree. After
that, we obtain the bitmap from the moved latent vector
and calculate the loss with the ground truth. (b) The process
of generating bitmap font variations. After obtaining the
trajectory optimized for the desired property, we generate
bitmap font variations from the bitmap of a single-character
static font by leveraging the direction of this trajectory.

optimization process, we first prepare bitmap font variations as ref-
erences by rasterizing real-world variable fonts with an axis of the
desired property. Then, in the optimization process, we update the
parameter of the trajectory direction to follow the desired property
utilizing the reference font variations.

We also explain the concrete workflow of the optimization (Fig-
ure 2). We use 𝛼 as the parameter representing the degree of trans-
forming input static font bitmap.Wemove the parameter of variable
font to the same degree as 𝛼 , and obtain the reference font bitmap
Var(𝐼 , 𝛼) with respect to reference bitmap 𝐼 . We define Enc as DG-
Font encoder and Dec as DG-Font decoder. We use the bitmap ras-
terized from the training variable font with the middle parameter as
the input in the optimization process. First, we obtain Enc(𝐼 ) from
the input bitmap 𝐼 with the encoder. Then, we obtain Enc(I) + 𝛼𝑤

by moving the latent vector to the degree of 𝛼 along the latent
vector𝑤 that represents the direction of the trajectory in the latent
space. Finally, we obtain font bitmap Dec(Enc(𝐼 ) + 𝛼𝑤) from the
moved latent vector with the decoder. Regarding loss function, we
define the L2 loss below:

𝐿2(Dec(Enc(𝐼 ) + 𝛼𝑤),Var(𝐼 , 𝛼))
Then, we optimize the direction of the trajectory to minimize the
following objective function:

𝑤∗ = argmin
𝑤

E𝐼 ,𝛼 [𝐿2(Dec(Enc(𝐼 ) + 𝛼𝑤),Var(𝐼 , 𝛼))]

3 EXPERIMENT
We generated bitmap variations of the Roman fonts for two at-

tributes (weight and width) and evaluated our method. We com-
pared the geometric transformation (baseline methods) and our
method quantitatively and qualitatively regarding these two at-
tributes. In the quantitative evaluation, we compared them in terms
of generalization ability to unseen fonts and characters.

As the baseline method, we used geometric transformation (Fig-
ure 1 (d) (e)). Specifically, we used morphological transformation

(a geometric transformation that erodes or dilates an object in an
image) for weight axis and horizontal scaling for width axis.

3.1 Experimental Setup
We collected 250 variable fonts for weight axis and 60 for width
axis, respectively, and divided them into training data (variable
fonts for optimization) and test data (variable fonts for evaluation).
In evaluating the generalization ability to unseen fonts, we used 62
(0-9, a-z, and A-Z) characters and divided fonts into (train, test) =
(200, 50) for weight axis, and (train, test) = (50, 10) for width axis. In
evaluating the generalization ability to unseen characters, we used
(weight, width) = (250, 60) fonts and divided characters into 56 (0-9,
a-z, and A-T) training characters and 6 (U-Z) test characters.

3.2 Results
Table 1 shows the comparison results for weight and width axes.

As a result, our method is quantitatively superior to the baseline
method (morphological transformation) for weight axis. On the
other hand, for width axis, the baseline method (horizontal scaling)
is superior to our method.

Ours (L2 ↓) Baseline (L2 ↓)
unseen font (weight) 0.1695 0.2590

unseen character (weight) 0.1429 0.1908
unseen font (width) 0.2418 0.09437

unseen character (width) 0.2338 0.07793
Table 1: Comparison with geometric transformation (The
baseline methods).

Figure 1 (d) (e) refer to the comparison of generated font vari-
ations by geometric transformation (Baseline) and our methods
(Ours) with bitmap font variations obtained from ground truth
variable fonts (GT).

(d) is the comparison for weight axis. In particular, font variations
generated by the baseline method disappear as the font becomes
thinner. On the other hand, our method can maintain its form.

(e) is the comparison for width axis. Regarding the weight of
fonts, ground truth variable fonts have a consistent weight indepen-
dent of the width. On the other hand, The weight of font variations
generated by the baseline method depends on their width. At the
same time, our method can preserve the weight of generated font
variations regardless of their width. Therefore, the actual quality of
our method is higher than that of the baseline method, even though
the baseline method is superior to our method in the quantitative
evaluation.

ACKNOWLEDGMENTS
This work was partially supported by JST AdCORP, Grant Number
JPMJKB2302, JSPS Grant-in-Aid JP23K16921, Japan, and a collabo-
ration with Dentsu Digital.

REFERENCES
Ali Jahanian, Lucy Chai, and Phillip Isola. 2020. On the "steerability" of generative

adversarial networks. In International Conference on Learning Representations.
Rainer Erich Scheichelbauer. 2024. Creating a variable font. https://glyphsapp.com/

learn/creating-a-variable-font.
Yangchen Xie, Xinyuan Chen, Li Sun, and Yue Lu. 2021. DG-Font: Deformable Genera-

tive Networks for Unsupervised Font Generation. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition (CVPR). 5130–5140.

https://glyphsapp.com/learn/creating-a-variable-font
https://glyphsapp.com/learn/creating-a-variable-font

	1 Introduction
	2 Method
	3 Experiment
	3.1 Experimental Setup
	3.2 Results

	Acknowledgments
	References

