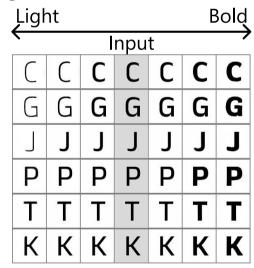
Generating Font Variations Using Latent Space Trajectory

Sotaro Kanazawa, I-Chao Shen, Yuki Tatsukawa, Takeo Igarashi The University of Tokyo

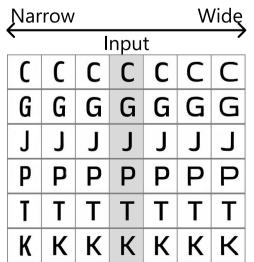
Goal

Generate bitmap font variations

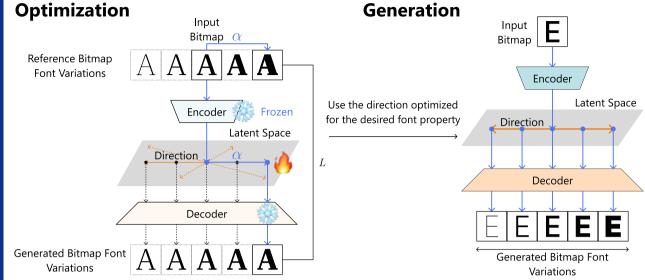

using the latent space trajectory of font-specific generative models to assist in designing variable fonts. **Input** single-character font bitmap **Output** bitmap font variations

Motivation

- Variable fonts allow you to freely change the parameters of font properties.
- However, their design process is too detailed and time-consuming.
- To tackle this problem, we extend font-specific generative models to assisting in the automatic generation of variable fonts.


Examples Results

Weight Axis



Width Axis

References

Method

- **1. Optimize the direction of a latent space trajectory** of a font-specific generative model [1] based on a method in [2].
- **2. Generate bitmap font variations from the bitmap of a singlecharacter font** by leveraging the direction of the trajectory optimized for the desired property.

Evaluation

Dataset 250 (Weight) / 60 (Width) variable fonts × 62 characters (0-9, a-z, A-Z) **GT** Rasterized real-world variable fonts

Baseline Geometric transformation (morphological transformation¹ for weight. horizontal scaling for width)

Qualitative Comparison (Weight Axis)

	Ligł	nt		•	Bold							
	Input											
GT	G	G	G	G	G	G	G	G	G	G	G	GT
Baseline			()	G	G	G	G	G	G	G	C	Baselin
Ours	G	G	G	G	G	G	G	G	G	G	G	Ours

	Ļigł	nt								E	Bold
	\leftarrow				I	npu	t				
Т	С	С	С	С	С	С	С	С	С	С	С
line			1	С	С	С	С	С	C	C	C
rs	С	С	С	С	С	С	С	С	С	С	С

Qualitative Comparison (Width Axis)

-													
	Narrow										Wide		
	Input												
GT	G	G	G	G	G	G	G	G	G	G	G		
Baseline	G	G	G	G	G	G	G	G	G	G	G	В	
Ours	G	G	G	G	G	G	G	G	G	G	G		

	Nar	Narrow											
		Input											
GT	С	С	С	С	С	С	С	С	С	С	С		
Baseline	С	С	С	С	С	С	С	С	С	С	С		
Ours	C	C	С	С	С	С	С	С	С	С	С		

Quantitative Comparison

	Ours (L2 \downarrow)	Baseline (L2 \downarrow)
unseen font (weight)	0.1695	0.2590
unseen character (weight)	0.1429	0.1908
unseen font (width)	0.2418	0.09437
unseen character (width)	0.2338	0.07793

¹geometric transformation that erodes or dilates an object in an image

Acknowledgements

 Yangchen Xie, Xinyuan Chen, Li Sun, and Yue Lu. 2021. DG-Font: Deformable Generative Networks for Unsupervised Font Generation. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). 5130–5140.
Ali Jahanian, Lucy Chai, and Phillip Isola. 2020. On the "steerability" of generative adversarial networks. In International Conference on Learning Representations. This work was partially supported by JST AdCORP, Grant Number JPMJKB2302, JSPS Grant-in-Aid JP23K16921, Japan, and a collaboration with Dentsu Digital.