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1 Introduction

Manipulating 3D objects derived from a single photo poses a considerable
challenge. Unlike previous works that directly edit 3D man-made objects
directly [1], this task comprises numerous complex subtasks. These tasks
include extracting the target shape from the background, estimating the 3D
pose, shape, and materials of the object, estimating the lighting conditions in
the scene through image observation, and defining the controllers to manipu-
late the estimated object properties. Recently, advanced deep learning-based
methods have been developed to perform numerous subtasks, including object
segmentation [2]; object pose [3], shape [4-6], and material estimation [7]; and
lighting estimation [8, 9].

Moreover, generative adversarial networks (GANs) have opened up a new
high-fidelity image generation paradigm. For example, because of its disentan-
gled style space, StyleGAN [10] can produce high-resolution facial images with
unmatched photorealism and support stylized manipulation. Users can manip-
ulate the generated outputs by adjusting the latent code [11-15]. Furthermore,
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Fig. 1 Overview of StylePart. (a) We first project the input image into the GAN
latent space, and (b) map the projected GAN latent code Winput to its corresponding shape
attributes and viewing angle using a forward shape-consistent latent mapping function. (c)
A wuser can directly manipulate the image shape at the part-level. Then, we obtain the
manipulated GAN latent code Wmanipulate by (d) mapping the manipulated attributes to
the GAN latent space with a backward mapping function. Finally, we (e) synthesize the final
edited image without the need of any 3D workflow.

they can also edit a natural image by projecting it into the GAN image latent
space, identifying a latent code that reconstructs the input image, and then
modifying that code [16, 17].

Semantic 3D controllers have been proposed to allow for semantic param-
eter control over images. For example, the 3D morphable face model (3DMM)
has particularly been used to manipulating face shape, facial expression, head
orientation and scene illumination in both generated [18] and natural [19, 20]
human face images. However, the current methods are exclusively applicable
to portrait face images, posing a limitation in their usage.

In this paper, we present StylePart, which investigates how to achieve part-
based manipulation of man-made objects in a single image. The key insight
of our method is to augment a 3D generative model representation that is
controllable and with semantic information with the image latent space. We
propose a shape-consistent mapping function that connects the image gen-
erative latent space and latent space of the 3D man-made shape attribute.
The shape-consistent mapping function is composed of forward and backward
mapping functions. We “forwardly map” the input image from the image
latent code space to the shape attribute space, where the shape can be easily
manipulated. The manipulated shape is “backwardly mapped” to the image
latent code space and synthesized using a pretrained StyleGAN. With the
backward mapping, the user can obtain final edited image without resort-
ing to any 3D workflow. This brings a huge advantage so that the users do
not need to understand how to manipulate the lighting conditions, materials
properties, and every rendering parameter. We also propose a novel training
strategy that guarantees the soundness of the mapped 3D shape structure.
Overall, our method offers a significant advantage over other methods as it
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allows for explicit part-based control through the PartVAE code. For exam-
ple, although pixelNeRF [21] can be used to render novel views of a shape
from a sparse set of views, it is not intuitive to manipulate the shape directly.
Moreover, compared to baseline conditional VAE, our method achieves better
shape reconstruction. Finally, our method includes both forward and backward
mapping functions, making it highly versatile for a wide range of image-based
shape editing applications as shown in this paper.

Note that we focus on the subtask of extracting controllers to manipulate
the shape only, instead of proposing a full image manipulation system that
tackle all subtasks altogether. Thus we use images with a simple rendering
style without complex lighting conditions and material properties to demon-
strate our results. We evaluate our method through shape reconstruction tests,
considering four man-made objectcategories (chair, cup, car, and guitar). We
also present several identity-preserving manipulated results of three shape-part
manipulation tasks: including part replacement, part resizing, and orientation
manipulation.

2 Related Work

2.1 Image-based shape reconstruction and editing

Three-dimensional modeling based on a single photo has been a challenge
in the field of computer graphics and computer vision. Several studies have
investigated shape inference from multiple images [22, 23] and single photos
for different shape representations, such as voxel [24, 25], point cloud [26],
mesh [5, 6, 27], and simple primitives [28]. With advances in deep learning
methods, the quality of reconstructed shapes and images has improved tremen-
dously; however, they are usually not semantically controllable. Chen et al. [28]
proposed 3-Sweep, an interactive method for shape extraction and manipula-
tion in a photo. A user can create 3D primitives (cylinders and cuboids) using
3-Sweep and manipulate the photo content using extracted primitives. Baner-
jee et al. [29] enable users to manually aligned a publicly available 3D model to
guide the completion of geometry and light estimations. Zheng et al. [30] pro-
posed a system that extracts cuboid-based proxies automatically and enable
semantic manipulations. Unlike previous methods, our method leverages recent
advances in part-based generative shape representations [31, 32] to automati-
cally infer shape attributes. Moreover, the shape parts are more complex than
simple cylinders and cuboids used in previous methods [28, 30].

2.2 GAN inversion and latent space manipulation

GAN inversion is required to edit a real image through latent manipula-
tion. GAN inversion identifies the latent vector from which the generator can
best replicate the input image. Inversion methods can typically be divided
into optimization- and encoder-based methods. Optimization-based methods
which directly optimize the latent code using a single sample [33-36], whereas
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Fig. 2 The network architecture of our cross-domain mapping framework.

encoder-based methods train an encoder over a large number of samples [37—
39]. Some recent works have augmented the inversion process with additional
semantic constraints [40] and additional latent codes [41]. Among these works,
many have specifically considered StyleGAN inversion and investigated latent
spaces with different disentanglement abilities, such as W [42], W [33, 34, 43],
and style space (S) [44]. Several works have examined semantic directions
in the latent spaces of pretrained GANs. Full-supervision using semantic
labels [11, 45] and self-supervised approaches [46-48] have been employed.
Moreover, several recent studies have utilized unsupervised methods to obtain
semantic directions[12, 13, 49]. A series of works focused on real human facial
editing [18, 19] and non-photorealistic faces [50]; they utilized a prior in the
form of a 3D morphable face model.

Unlike EditGAN [43], StylePart enables more 3D-aware part-based image
editing such as part replacing and shape orientation manipulation. Com-
pared to Liu et al. [51], there is no need to prepare a part-level CAD model
beforehand and our method supports more categories of objects.

3 Method

We aim to enable users to directly edit the structure of a man-made shape
in an image. We first describe the background of the 3D shape representation
method, which allows for tight semantic control of a 3D man-made shape.
We then describe a new neural network architecture that maps latent vectors
between the image and 3D shape domains, and highlight the different shape
part manipulation methods of the architecture.

3.1 3D shape attribute representation

We adopt a structured deformable mesh generative network (SDM-NET) [31]
to represent the man-made shape attributes. The network allows for tight
semantic control of different shape parts. Moreover, it generates a spatial
arrangement of closed, deformable mesh parts, which represents the global part
structure of a shape collection, e.g., chair, table, and airplane. In SDM-NET,
a complete man-made shape is generated using a two-level architecture com-
prising a part variational autoencoder (PartVAE) and structured parts VAE
(SP-VAE). PartVAE learns the deformation of a single part using its Laplacian



Springer Nature 2021 BTEX template

StylePart: Image-based Shape Part Manipulation 5

feature vector, extracted through the method established in [52], and SP-VAE
jointly learns the deformation of all parts of a shape and the structural rela-
tionship between them. In this work, given an input shape s of category ¢ with
n. as the number of parts, we represent its shape attributes S = (P, T) using
both

o Geometric attribute (P € R#*™<): all the PartVAE latent codes of each
shape, where z = 128 is the dimension of the PartVAE latent code
adopted in our work.

e Topology attribute (T € R?"<*73): the representation vector rv in SDM-
Net. This vector represents the associated relationships of each part
in s, including existence, supporting, and symmetry information. Differ-
ent shapes in the same category will have different rv. Please refer to
Section 3.1 in Gao et al. [31].

3.2 Shape-consistent mapping framework

At the core of our image-based shape part manipulation pipeline (shown in
Figure 2) is a cross-domain mapping structure between the image latent space
W and the shape attribute space S. Given an input image containing a man-
made object (I), the image inversion method is first applied to optimize a
GAN latent code (wy) that can best reconstruct the image. Then, the corre-
sponding shape attributes (S) are obtained using a forward shape-consistent
latent mapping function (Mpg). The viewing angle of the input image is pre-
dicted using a pretrained viewing angle predictor (My ). From the mapped
geometric attribute, topology attribute, and the predicted viewing angle, we
can perform image-based shape editing tasks, such as part replacement, part
deformation, and viewing angle manipulation by manipulating the attribute
codes. After manipulating the attribute codes, we use the backward mapping
function (Mp) to map the shape attributes to an image latent code (w’). The
final edited image can be synthesized as I,,, = G(w').

3.2.1 Image inversion

To obtain the latent code of the input image I, we optimize the following
objective:

wr = argmin Lrprps(1, G(w; 0)) + AL, (W), (1)

where G is a pretrained StyleGAN-ADA [53] generator with weight 6, L1 prps
denotes the perceptual loss [54], and Ly,,, = ||w||3 denotes the latent code
regularization loss. We introduced Ly,,, above because we observed that there
are multiple latent codes that can synthesize the same image. By introducing
Wieg, We regularize the solution for each input image.
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3.2.2 From W to 8§

Given a GAN latent code wy, which is inverted from an input image I, we
obtain the corresponding shape attribute code S = (P, T) using the forward
mapping network (P, T) = Mp(wy), where the 3D shape generated by (P, T)
best fits the target man-made shape encoded in the image latent code wry.

3.2.3 From S to W

Given the shape attribute S and one-hot vector of a viewing angle v, the
backward mapping function predicts a GAN latent code w' = Mg(S, v), where
the synthesized image I, = G(w’) best matches the image containing the
target shape described in S with viewing angle v. Our mapping functions (Mg
and Mp) are realized using two eight-layer MLP networks.

3.3 Training strategy and loss function
3.3.1 Data preparation

To train our shape-consistent mapping function, both the image-based latent
code and the shape attribute code for each man-made object shape are
required. In this paper, we use synthetic datasets of four categories (chair,
guitar, car, and cup). A dataset contains N shapes, formed by interchang-
ing the M parts of N shapes. For each shape, we apply a simple procedure
to ensure there is no gap in the interchanged shape. We fix one part of the
shape and move the rest parts toward the fixed part until the bounding boxes
have an intersection. We render these shapes according to different viewing
angles to obtain the paired shapes and images. We sample the viewing angles
at 30° intervals on the yaw axis. For the chair and guitar category, N = 15
and M = 3; for the cup and car categories, N = 50 and M = 2. There are
3,375 shapes and 40, 500 images for the chair and guitar categories, and 2, 500
shapes and 30, 000 images for the car and cup category. We split the synthetic
datasets for each category into 80% training data and 20% testing data For
shape k, we first prepare the shape attribute code Si. Each part is represented
by a feature matrix f € RV that describes the per-vertex deformation of a
template cube with V' = 3, 752 vertices. Let n. denote the number of the parts
for category c, and zpert = 128 is the dimension of a PartVAE latent code. We
embed the feature matrix of part ¢ (f;) into a pretrained PartVAE and obtain
P; = Encp,(f;). We compute topology vector T € R?"*73 for each shape.
Finally, for each shape, we concatenate the Part VAE codes of all parts and the
topology vector into the final shape attribute vector S = (Pg, Pq,...,Pp,—1, T).

Next, we prepare the image-based latent code for shape k. We render
all shapes from 12 viewing angles and use these images to train a Style-
GAN?2 through adaptive discriminator augmentation [53], which depends on
the image’s viewing angle. We project the rendered image containing shape
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k into the pretrained conditional StyleGAN latent space to obtain the corre-
sponding latent code wy, € R512. We collect all (wy, S) pairs for training Mp
and Mp.

3.3.2 Training for Mg

We train the forward mapping function Mg using a two-step process com-
prising Laplacian feature reconstruction training and size finetuning. In the
Laplacian feature reconstruction training step, we use the following loss func-

tion involving the feature vector reconstruction loss (Lp,._., ) and the topology
loss (L):
Lip = LP,peon T LT, (2)
where Lp, ., and Lt are defined as follows:
N
Lp,..,. = Y _ Decp,(P') = Decp,(P)3 (3)
i=1
N
Lr=) |T Tl (4)
i=1

Here, (P’, T') are the shape attrbutes predicted by Mg, Decp,(-) denotes the
pretrained PartVAE decoder of the i-th part, and N denotes the number of
parts. In the size finetuning step, we replace the reconstructed feature vectors
from the Laplacian feature to the vertex coordinates. As shown in Figure 3,
we observed the Laplacian feature vectors are sensitive to local differences but
insensitive to global shape differences. The loss function in this step can be
written as:

Lty =Ly, + L (5)
N

Ly, = Y T(Decp,(P)) — T(Decp,(P))s (6)
=1

where 7 transforms a vertex Laplacian feature vector into its vertex coordi-
nates according to the steps described in [52].

3.3.3 Training for Mp

Our backward mapping function Mp minimizes the following loss:

EMB = £ + )\1£Wreg (7)

Wrecon
where )\ is the weight of the I norm regularization term of the image latent
code w’ (the same weight used in image inversion in Eq. 1), and £ is

Wrecon
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Fig. 3 (a) With Laplaman feature differences, some deformations cannot be captured
(highlighted by red rectangles). (b) On the contrary, vertex coordinate differences capture
these deformations more accurately.

defined as:

Laiecon = Lrrrps(G(w'), G(w)) (8)
where G is the pretrained Style-ADA generator, w’ is the mapped image latent
code of (P, T), and Lrprps(-) is the perceptual loss function [54].

3.3.4 Finetuning for My and Mg
After training Mp and Mp separately, we finetune them together using the
following loss function:

ﬁﬁnetune =Lr+L Alﬁwrcg + )‘2’CPrcg (9)

Wrecon
where Ao is the weight of a shape attribute regularization term which can be
written as:

Lp,, = Mp(w) = Mp,,,,.(w)2, (10)
where Ffeeze 1S the frozen network before finetuning. Here, we introduce a
Laplacian feature reconstruction loss with a shape attribute regularization
term Lp, ; the loss function differs from the loss functions used to train
Mp and Mp. In Figure 4, we show the reconstructed shapes based on Part-
VAE latent codes predicted with or without Lp, .. Lp,,, prevents substantial
deviation of the PartVAE latent codes from reasonable 3D shapes. The reg-
ularization term Lp, , has a significant impact because it helps to align the
original latent spaces learned from forward and backward mapping functions
that are often not well aligned. By adding this term, we encourage the fine-
tuning process to focus on the final latent space around the learned forward
mapping function. This alignment leads to better performance.
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Fig. 4 (a) Input image I; (b) is the mapped shape of w; without LP,egs (c) is the mapped
shape of wy with Lp,; (d) is the target shape rendered in the input image.

4 Shape part manipulation

4.1 Part replacement

The first manipulation task is to replace parts of the input shape. Given the
source image Isource, the user aims to replace one part (e.g., chair back) in
Isource With the corresponding part in the target image Iiarget- The part replace-
ment procedure of our mapping framework is illustrated in Figure 5. First,
we obtain the image latent codes (Wsource and wtarget) through image inver-
sion and then we use the pretrained My to obtain the shape attributes Sqource
and Syarget of the shape in both input images. A user can select which part
(e.g., back, seat, or leg) of the shape in Isource he/she wants to replace. The
corresponding shape attribute representing the selected part is then replaced
with the target shape attribute S/, .. = {P{wee, P{8 . Psoucel Finally,
we synthesize the edited image I' = G(Mp(S’,V)), where V is the original
viewing angle vector. The new shape in the manipulated image will contain
the part selected from Iiarget, While the non-selected parts will remain as close
as possible to the original parts in Isource-

4.2 Part resizing

The second manipulation task is part resizing. A user directly resizes a selected
part in the input image. We first invert an input image I to obtain its GAN
latent code w; and map w; to the shape attribute S by Mp. The user can
resize the selected part by following a certain trajectory in the latent space
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and obtain the resulted image I egize:
Iresize - G(’LU] +~FT<TP))3 (11)

where rF is the trajectory of the PartVAE latent code that represents the
desired resizing result, and F,. is a trajectory finetuner function that refines a
PartVAE code trajectory into a GAN latent code trajectory.

4.2.1 Resize trajectory

Trajectories that fit the desired resize manipulation in & and W are obtained
using the following procedure. Given a shape s; in our dataset, we obtain its
geometric attribute by P; = Encp(7 ~1(s;)), where Encp is a pretrained Part-
VAE encoder. Then we apply a specific resizing operation to s; to obtain the
resized shape §; = R(s;) and its geometric attribute P; = Encp(T1(8;)).
Thus, we obtain a PartVAE latent trajectory for this resize manipulation of
s; by 1P = P, — P;,. We apply the same resize manipulation to all shapes
in our dataset and average all PartVAE latent trajectories to obtain a gen-
eral trajectory r® = (1/N) 3y (rF) representing the resizing manipulation.
By applying rF, we observe that the resized images often lose some details,
thus impairing shape identify (Figure 7). For better shape identity after part
resizing, we introduce a GAN space trajectory finetuner implemented using a
four-layer MLP. The main function of this finetuner is to transform the tra-
jectories from S to W. The finetuner inputs are the GAN latent code of input
image w; and a PartVAE latent trajectory of the target part, while the output
is a trajectory in W. The training data of this trajectory finetuner is paired
trajectory data (rF,rW). To collect the paired trajectory data, we first add
7P to the PartVAE latent codes of all training shapes and obtain the rendered
image latent codes (i.e., @;) by optimizing Eq. 1. For shape 4, we obtain the
GAN latent space trajectory r¥V corresponding to r¥ by rWV = ; — w;. We
train this trajectory finetuner by minimizing the following loss function:

Lr = ||Fr(wr,r®) = V|3, (12)

We use the shapes in the datasets mentioned in Section 5.1 as the origi-
nal shapes. For each part, we resize shapes by adding three weights (-0.57F,
+0.57F, +1.0rF) to the specific shape attribute trajectory. There are 10,125
(3,375 x 3) shapes for each part of chair and guitar, and 30,375 (10,125 x 3
parts) shapes in total. There are 7,500 (2,500 x 3) shapes for each part of car
and cup, and a total of 21,500 (7,500 x 3 parts) and 15,000 (7,500. x 2 parts)
shapes, respecitvely.

4.3 Shape orientation manipulation

The third editing task is shape orientation manipulation. To achieve this, we
first train a shape orientation prediction network (My ) to predict the orien-
tation of an image I from its GAN latent code wy, i.e., V. = My (wy). The
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Fig. 5 Part replacement editing process based on our pipeline.

shape orientation prediction network is an eight-layer MLP trained with the
cross-entropy loss. For each category, we use the rendered images described in
Section 3.3 and collect 36,000 paired training data (w,v) from 3,000 shapes
in 12 different orientations.

To manipulate the orientation of input image I, we obtain the shape
attribute S of the shape in the input image using M. We obtain the edited
image with the manipulated orientation vector: I' = G(Mp((S,V’))).

5 Experiment and Results

5.1 Implementation details

For each man-made object category, we trained the StyleGAN-ADA generator
using a batch size of 64 and learning rate of 0.0025. Both of our forward and
backward mapping networks were trained using the Adam [55] optimizer for
3,000 epochs and a batch size 64. All networks were trained using a Tesla V100
GPU. We implemented our pipeline using PyTorch [56]. The forward mapping
network were trained for 0.5-3 days, depending on the number of part labels.
The backward mapping network were trained for 20 hours, and the forward
and backward mapping networks were finetuned together for 10 hours.
Baseline disentangled network We use a conditional variational autoencoder
(cVAE) as the baseline disentangled method (we provide the architecture in the
supplemental material) and compare our results with this baseline on image
shape reconstruction and the results of viewing angle manipulation quanti-
tatively. For each shape, we include three factors: part identity, part size,
and viewing angle. All these factors are modeled as discrete variables and
represented as one-hot vectors during training and testing.

5.2 Image shape reconstruction

The key contribution of the proposed framework are the mapping functions
between the GAN latent space and the shape attribute latent space. We qual-
itatively and quantitatively evaluated these mapping functions through image
shape reconstruction.
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Chair Car Cup Guitar

w/ w/o B w w/o B w w/o B w w/o B

E.] 1.28263 - 1.453.07 - 0.99120 - 0.40 0.74 —

E; ] 0.09 0.12 0.14 0.01 0.02 0.06 0.07 0.12 0.21 0.01 0.08 0.13
Table 1 Comparison of the mean shape reconstruction errors (Fs) and mean image
reconstruction errors (E;) of results obtained from with and without size finetuning, and
the baseline conditional VAE (cVAE) method B. We did not report the mean shape
reconstruction error fo the baseline method because it did not reconstruct a explicit shape.

5.2.1 With/Without size finetuning for Mg

As described in Section 3.3, after the Laplacian feature reconstruction training,
we performed an additional size finetuning for Mp with vertex coordinate loss
for a better reconstruction. To test the effectiveness of the size finetuning, we
evaluated the reconstruction quality of the front view of the testing images
described in Section 3.3. We sampled 4, 000 points on each shape and calculated
the bidirectional Chamfer distance as our shape reconstruction error metric,
and we used perceptual loss as the image reconstruction error metric. Both
the image reconstruction and the shape reconstruction errors were lower when
the network was trained with size finetuning (Table 1).

5.2.2 Finetuning for Mg and Mp

After separately training Mg and Mpg , we performed an end-to-end finetuning
to improve the reconstruction results. We compared the full and non-finetuned
versions of our method. The full version included the shape attribute regu-
larizer Lp, ., to prevent the shape from collapsing. We tested on about 300
images in each category and obtained the mean perceptual losses of finetuned
networks and non-finetuned networks. Through this step, the image recon-
struction errors for chair, car, cup, and guitar categories were reduced by 28%,
37%, 27%, and 32% respectively.

5.3 Shape part manipulation results
5.3.1 Part replacement results

We randomly picked 12 different chair images and exchanged their parts.
We applied several replacement patterns to all possible combinations of the
picked 12 images and produced edited images for each category. We show
some replacement results in Figure 6. Detailed results are available in the
supplementary material.

5.3.2 Part resizing results

We trained separate GAN latent trajectory finetuners for each part using the
resizing dataset discussed in Section 4.2. We compared the test results obtained
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Fig. 6 Results of part replacement. The images were produced from the attributes of shape

1 and 2.

Chair Car Cup Guitar

back seat legs body wheel body grip head neck body

rP 822 11.95 5.60 13.70 7.05 14.55 12.67 1.62 2.85 4.62

F, 6.18 7.73 5.33 6.34 4.42 6.88 5.85 0.96 1.58 2.08
Table 2 Quantitative results for the part resizing manipulation. Comparison of mean
perceptual losses of results obtained using shape attribute trajectory (rF) and the GAN
space trajectory finetuner (F).

by two methods: using shape attribute trajectory (r¥) and the GAN space tra-
jectory finetuner (F,.). The comparison results and mean perceptual losses are
shown in Figure 7 and Table 2, respectively. The manipulation result obtained
from F,. showed less perceptual loss and matched the desired resize manipula-
tion better than the results obtained from rF. Moreover, we applied multiple
trajectory finetuners trained on different parts of the same image to simulta-
neously resize multiple parts. Regarding the failure case (last row in Figure 7),
it fails because the target resized image was outside the GAN latent space,
and the finetuner could not find a good trajectory to fit the target image.

5.3.3 Shape orientation manipulation results

Figure 8 shows the shape orientation manipulation results. By manipulating
the one-hot vector of the shape orientation of a given image, our method can
produce the images of different shape orientations. We tested the images
described in Section 3.3 against the baseline method. For each shape, each
method synthesizes images from 12 different orientations as described in
Section 5.3.3. In Table 3, we show mean perceptual losses across different orien-
tations. The results of our method obtain lower perceptual losses compared to
the results of the baseline method (¢VAE) and pixelNeRF [21]. We trained a 1-
view pixelNeRF using our training data. This result suggested that the explicit
shape attribute latent space helps to build up better geometries compared to
random latent vectors and implicit geometries learned by radiance field-based
method [21]. The shape identities of the manipulated results (Figure 8) were
well maintained. We showed the visual comparisons of our results and the
results of pixelNeRF [21] in Figure 9. The results of pixelNeRF often fail to
reconstruct the geometry details of shape parts, thus the shape identifies are
not maintained.



Springer Nature 2021 BTEX template

14 StylePart: Image-based Shape Part Manipulation

Chair| Car| Cupl Guitar]

Our 0.0022 0.0075 0.0029 0.0043
B 0.0416 0.05 0.07 0.02
pixelNeRF 0.0074 0.022 0.0091 0.0085

Table 3 Shape orientation manipulation quantitative evaluation.

5.4 Real image results

We tested our pipeline for shape part manipulation of real images. To infer
the shape attributes of an object in the input real image I, we first colorized
the shape region in I so that it had the same appearance as our dataset. We
projected the colorized image I into the GAN latent space to obtain its GAN
latent code wj. Because the shape in I was often outside the domain covered by
our training dataset, our pipeline yielded unsatisfactory results (without shape-
specific finetune row in Figure 10). To address this problem, we designed a
shape-specific finetuning process. We identified the best forward and backward
mapping network parameters ¢}, and 0}, for I by optimizing the following
function:

,cLPIps(I/,I)—f—)\ge;\/[F _HMF2+)\49§\/[B _0M32a (13)

where 0y, and 0p, are the parameters of the pretrained forward and back-
ward mapping functions, and A3 and A, are the weights of losses representing
the distances between the pretrained mapping functions and optimized map-
ping functions. Figure 10 shows the manipulated results for a real image
obtained through the shape-specific finetuning process. After obtaining the
manipulated image, we warped the input texture in the source real image
using TPS warping. We identified the object contours in the input image and
the manipulated images using [57], and sampled points on the contours as the
control points for TPS warping.

6 Conclusion and Limitation

In this paper, we propose a framework for bridging the image latent space
and 3D shape attribute space using shape-consistent mapping functions. Fur-
thermore, we show that the mapping functions enable image shape part
manipulation subtasks such as part replacement, part resizing, and shape
orientation manipulation without the need of any 3D workflow.

Fized shape attribute space. Our trained mapping function assumed fixed the
number of parts, which is inherited from SDMNet [31]. In the future, we plan
to explore a more flexible shape attribute space.

Gap between synthesized images and real images. Our framework focuses on
the geometry of the input synthesized image. To manipulate the shape of a real
image, we need to infer the appearance of the deformed textures to achieve
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chair back
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chair seat
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guitar body
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car body
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cup body
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latent space

Fig. 7 Part resizing results for different categories. (a) is the input image, (b) resized
image directly obtained using P+rF; (c) resized image obtained using GAN space trajectory
finetuner; (d) is the inverted result of ground truth, and (e) is the rendered ground truth.

realistic manipulation results. We plan to learn mapping functions between
realistic image with rendered image using image translation network [58].
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Fig. 8 Shape orientation manipulation results. Our method can synthesize images of the
shape from different viewing angles.

input view our method  pixelNeRF  our method pixelNeRF

Fig. 9 Comparison with pixelNeRF [21]. Our method synthesized shapes with
more details while pixelNeRF only synthesize blurry shapes using the same
input orientation.
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