
ScrapReCover: An Interactive Optimization System for Freeform
Patchwork Layouts

Masahiro Kono
marckono2825@g.ecc.u-tokyo.ac.jp

The University of Tokyo
Tokyo, Japan

Maria Larsson
ma.ka.larsson@gmail.com
The University of Tokyo

Tokyo, Japan

I-Chao Shen
jdilyshen@gmail.com

The University of Tokyo
Tokyo, Japan

Takeo Igarashi
takeo@acm.org

The University of Tokyo
Tokyo, Japan

Figure 1: ScrapReCover is an interactive tool for designing freeform patchwork layouts from fabric scraps. (a) Users begin by
loading the scraps they wish to reuse. (b) Using ScrapReCover, they can iteratively refine the layout by combining manual
adjustments of individual scraps with automatic placement suggestions guided by intuitive parameters. For automatic sugges-
tions, the system arranges scraps within the target area, following an optimization strategy that minimizes material waste
while ensuring complete coverage. (c) Finally, the resulting layout can be fabricated into a unique patchwork product.

ABSTRACT
We present ScrapReCover , an interactive tool for designing freeform
patchwork layouts from small leftover fabric scraps. The system
enables users to iteratively refine the layout by combining manual
adjustments of individual scraps with automatic placement sugges-
tions guided by user-controlled parameters. These parameters can
be intuitively adjusted to control the degree of modification from
the current layout and to prioritize specific types of scraps. For
automatic suggestions, the system generates layouts by arranging

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
SCF ’25, November 20–21, 2025, Cambridge, MA, USA
© 2025 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 979-8-4007-2034-5/2025/11
https://doi.org/10.1145/3745778.3766653

arbitrarily shaped scraps within the target area, using an optimiza-
tion strategy that minimizes material waste while ensuring com-
plete coverage. To achieve this functionality, ScrapReCover employs
simulated annealing (SA), a robust metaheuristic and stochastic
algorithm known for its effectiveness in packing-like problems,
integrated with a rasterized representation of both scraps and pat-
tern shapes. The usability of the system was validated through a
user study in which 21 participants interactively generated layouts
and fabricated patchworks from their own scraps. Additionally, the
optimization method was evaluated by baseline comparisons which
demonstrate that our approach outperforms other naive methods.

CCS CONCEPTS
• Computing methodologies→ Graphics systems and inter-
faces.

KEYWORDS
Patchwork, computer-aided design, fabrication, design tools, dis-
crete optimization, geometric covering

https://orcid.org/0009-0002-3432-8541
https://orcid.org/0000-0002-4375-473X
https://orcid.org/0000-0003-4201-3793
https://orcid.org/0000-0002-5495-6441
https://doi.org/10.1145/3745778.3766653

SCF ’25, November 20–21, 2025, Cambridge, MA, USA Kono et al.

ACM Reference Format:
Masahiro Kono, Maria Larsson, I-Chao Shen, and Takeo Igarashi. 2025.
ScrapReCover: An Interactive Optimization System for Freeform Patchwork
Layouts. In ACM Symposium on Computational Fabrication (SCF ’25), Novem-
ber 20–21, 2025, Cambridge, MA, USA. ACM, New York, NY, USA, 15 pages.
https://doi.org/10.1145/3745778.3766653

1 INTRODUCTION
Manufacturing products like garments generates a significant amount
of material waste, both as a by-product of production and through
the disposal of worn-out fabrics. The growing volume of such waste
has become a major environmental concern, highlighting the need
for effective reuse strategies. One notable approach to repurposing
discarded materials is patchwork, a traditional technique that up-
cycles fabric scraps into visually intricate handcrafts. However, the
irregular shapes and varied colors of these scraps present challenges
in creating efficient layouts with aesthetically pleasing designs, par-
ticularly for those with little experience in this form of craft.

Existing systems for assisting patchwork design primarily focus
on conventional styles based on square grids or repetitive quilting
patterns (e.g., Figure 2a) [Bakker and Verhoeff 2022; Leake and
Daly 2024; Shinjo et al. 2024]. Although effective for certain design
goals, these approaches cannot be directly applied to irregularly
shaped fabric scraps. In contrast, our aim is to support the cre-
ation of freeform layouts that embrace the inherent irregularity
of fabric scraps, promoting more efficient material use while offer-
ing a distinct appearance that reflects the aesthetic of randomness
(e.g., Figure 2b). Related systems such as PatchProv [Leake et al.
2021] and Patchy [Igarashi and Mitani 2015] also support the cre-
ation of original patchwork designs through interactive procedures;
however, they do not offer automatic layout suggestions based on
optimization, requiring users to invest additional time and skill to
achieve satisfactory results that effectively utilize discarded scraps.

To address this challenge, we present ScrapReCover , an interac-
tive computer-aided design tool that supports the creation of origi-
nal freeform patchwork layouts from a given set of small leftover
fabric scraps. Rather than relying on a single-shot optimization, the
system enables users to iteratively refine the layout by seamlessly
combining manual adjustments of individual scraps with automatic
placement suggestions guided by user-controlled parameters. These
parameters can be adjusted via a simple slider to control the degree
of modification from the current layout and to prioritize either
regular or irregular scrap types. Since our goal is to encourage
unplanned creativity through various outputs, inspired by collage
art [Greenberg 2018], the optimization method is designed to help
users achieve two necessary and quantifiable objectives: complete
coverage and minimal waste. Given that our system operates on
small scraps (typically under 20 × 20 cm), remnants of the layout
often result in unusable offcuts. These fragments are treated as
material waste, and minimizing them is key to improving fabric
utilization. Therefore, for automatic layout suggestions, we formu-
late the task as a geometric covering problem [Contardo and Hertz
2021; Shragai and Elber 2013] involving irregularly shaped poly-
gons. Our system addresses this problem by arranging arbitrarily

1https://unsplash.com/photos/a-patchwork-quilt-with-an-orange-and-brown-
design-rOjcU5L4CpM
2https://pixabay.com/illustrations/background-embroidery-pattern-7566184/

Figure 2: Comparison between (a) traditional patchworkwith
repetitive design1 and (b) our target freeform design2.

shaped scraps within the target area, using an optimization strategy
that minimizes overlaps between scraps and out-of-bounds place-
ments while ensuring complete coverage, ultimately producing
unique designs.

To achieve these capabilities and explore the immense solution
space, ScrapReCover discretizes the problem through rasterization
and employs simulated annealing (SA) [Kirkpatrick et al. 1983], a
robust metaheuristic and stochastic algorithm known for its effec-
tiveness in packing-like problems [Bajuelos et al. 2009; Dowsland
1993; Gomes and Oliveira 2006; Tole et al. 2023]. SA is well-suited
to our context as it can converge on near-optimal solutions under
complex constraints within a practical timeframe for interactive
applications, and is able to perform multiple rounds of optimization
from arbitrary configurations. Moreover, its inherent randomness
aligns with our goal of generating diverse results. The combination
of generating diverse outcomes and supporting iterative refine-
ment creates opportunities for human intervention throughout the
design workflow. We augment SA with a neighborhood function
composed of five primitive operations and an objective function
that incorporates a penalty term. These components are configured
via a set of user-adjustable parameters, allowing users to specify
optimization goals in an interpretable manner.

The effectiveness of our system was evaluated through both
qualitative and quantitative studies. We conducted a user study
with 21 participants, where each participant brought their own fab-
ric scraps, and interactively designed patchwork layouts using our
system. Some of the participants then fabricated their designs into
real-world patchworks based on the resulting layouts, demonstrat-
ing the practical usability of our system. In addition, we compared
our optimization-based method with naive baselines, which con-
firmed that our approach achieves better visual quality and reduces
material waste more effectively.

To summarize, our main contributions are:
• An interactive computer-aided design tool that supports the
creation of freeform patchwork layouts from small leftover
fabric scraps.
• The formalization of a novel problem setting for arranging
irregularly shaped scraps in patchwork layouts.
• A robust discrete algorithm based on simulated annealing
that efficiently addresses the problem, supports user-driven
iterative refinement, and yields diverse results.

Our code are available at https://marc2825.github.io/ScrapReCover.

https://doi.org/10.1145/3745778.3766653
https://unsplash.com/photos/a-patchwork-quilt-with-an-orange-and-brown-design-rOjcU5L4CpM
https://unsplash.com/photos/a-patchwork-quilt-with-an-orange-and-brown-design-rOjcU5L4CpM
https://pixabay.com/illustrations/background-embroidery-pattern-7566184/
https://marc2825.github.io/ScrapReCover

ScrapReCover: An Interactive Optimization System for Freeform Patchwork Layouts SCF ’25, November 20–21, 2025, Cambridge, MA, USA

2 RELATEDWORK
2.1 Computational Design for Patchwork
Several systems have been proposed to assist with quilt and patch-
work design. ScrapMap [Leake and Daly 2024] and Shinjo et al.
[2024] focused on color arrangement tasks to help users create
visually compelling designs. Other approaches have explored algo-
rithmic generation for free-motion quilting [Li et al. 2019], and au-
tomated design of foundation paper pieceable (FPP) quilts [Bakker
and Verhoeff 2022; Leake et al. 2022]. However, these works rely on
structured patches or conventional design motifs. To support more
original design creation, PatchProv introduced an improvisational
quilting workflow [Leake et al. 2021], Patchy provided a painting-
based interface for manual patchwork design [Igarashi and Mitani
2015], Liu et al. [2017] presented a method that automatically gener-
ates sewing patterns for whole-cloth quilts from photographs by ex-
tracting edges and solving a variant of the Rural Postman Problem,
and McCormack and Schwarz [2024] explored human–machine
co-creativity through generative embroidery. Nevertheless, none
of these systems offer automatic placement suggestions during the
interactive process. In contrast, our approach integrates automatic
suggestions for freeform design that embraces the irregularity of
fabric scraps, aiming to extend users’ creativity through iterative,
optimization-driven support using a limited amount of materials.

2.2 Designing for Low-Waste Production
Various approaches were explored to support low-waste or even
zero-waste production through computer-aided methods. Waste-
banned assisted users in editing zero-waste fashion patterns [Zhang
et al. 2024], while Scrappy reduced material usage in 3D printing
by reusing discarded material as infill [Wall et al. 2021]. Box Cutter
provided an efficient UV atlas packing algorithm applicable to vari-
ous domains [Limper et al. 2018]. McQuillan et al. [2018] offered
an open-source system for zero-waste garment making through
printed navigational markers, and also investigated the use of 3D
modeling software for designing zero-waste garments [McQuillan
2020]. Koo et al. [2016] introduced a dynamic design adjustment
system for furniture tominimize offcuts. Patchingminimized plastic
waste in iterative 3D printing by re-fabricating only the modified
parts [Teibrich et al. 2015]. Fabricaide introduced a fabrication-
aware design tool that integrates a custom packing algorithm to
provide feedback on material use [Sethapakdi et al. 2021]. PacCAM
presented a system that combines computer vision and interactive
simulation to pack 2D parts onto source materials for digital fabri-
cation [Saakes et al. 2013]. Rags2Riches proposed an algorithm for
garment upcycling, formulating it as a quantized discrete assign-
ment solved with an ILP solver [Qi et al. 2025]. Baas et al. [2025]
presented a method for approximating 3D surfaces by reusing pan-
els from discarded materials. Similarly, we aim to promote efficient
placement strategies for reusing fabric scraps, with the goal of
minimizing material waste as effectively as possible.

2.3 The Packing and Covering Problem
Several related well-known problems, such as the "packing prob-
lem" and its dual problem (the "covering problem"), has been exten-
sively studied in the field of discrete mathematics and both has been

proven to be NP-complete [Culberson and Reckhow 1994; Fowler
et al. 1981]. Traditional packing focused on the non-overlapping
arrangement of smaller objects within a confined space [Dyck-
hoff 1990], and many heuristic approaches such as the First-Fit-
Decreasing (FFD) strategy [Johnson 1973], Bottom-Left (BL) algo-
rithm [Chazelle 1983], No-Fit Polygon (NFP) method [Oliveira et al.
2000], or applying beam search (BS) [Bennell and Song 2010] had
been proposed. Additionally, numerous studies had applied various
metaheuristic algorithms to address the vast solution space [Hopper
and Turton 1999, 2001], including our simulated annealing-based
method [Dowsland 1993; Gomes and Oliveira 2006; Tole et al. 2023].
Our problem is closely related to the 2D irregular packing prob-
lem (nesting problem) [Guo et al. 2022], which has applications
in various real-world scenarios like fabric utilization in garment
manufacturing [Bennell and Oliveira 2008]; however, our setting
permits overlaps, differentiating the nature of the problem.

Likewise, the covering problem aims to select a subset of ele-
ments to ensure complete coverage of a target while minimizing
resource usage [Borndörfer 1998; Chvatal 1979]. Specifically, our
problem setting can be classified as a geometric covering prob-
lem [Contardo and Hertz 2021; Shragai and Elber 2013]. However,
previous research had typically focused on simplified configura-
tions (e.g., involving only orthogonal edges [Franzblau and Kleit-
man 1984; Kumar and Ramesh 2003]), on practical scenarios (e.g.,
the "art gallery problem" [Bajuelos et al. 2009; De Berg 2000], sen-
sor network coverage [Huang and Tseng 2003]), or on cases where
some uncovered regions were tolerated [Kwan et al. 2016; Minarčík
et al. 2024]. In our situation, the input shapes are irregular, finite,
and pairwise distinct, which significantly increases the complexity
of the problem. We speculate that this unique setting has remained
relatively unexplored due to its complex mathematical assumptions
despite its limited correspondence with real-world applications.

3 SYSTEM OVERVIEW
To address the challenge of supporting users in creating freeform
design patchworks, we propose a workflow centered around our
interactive tool. The process begins with users selecting the fab-
ric scraps they wish to reuse and capturing a photograph from
directly above, using a fixed camera plane parallel to the surface.
With pattern shapes defined beforehand, users launch ScrapReCover
and import the selected fabric scraps through the segmentation

Figure 3: The segmentation interface for converting each
scrap into a digital form. It allows users to manually specify
the desired region of each photographed scrap by outlining
it as a polygon, which is then imported into the system.

SCF ’25, November 20–21, 2025, Cambridge, MA, USA Kono et al.

Figure 4: The ScrapReCover UI consists of five main components. Layout Workspace (top left, a-c), where scraps are placed on
the pattern; Available Scraps List (top right, d), which displays the unplaced scraps; Layout Control Panel (bottom left, e-g), a set
of global layout controls; Placed Scraps List (bottom center, h), which enumerates the placed scraps; and Scrap Control Panel
(bottom right, i–k), a set of controls for individual scraps. By combining manual operations with user-controlled automatic
placement suggestions, users can create their designs in an iterative and interactive manner.

interface as polygonal data, then iteratively create and refine their
layout. ScrapReCover supports this process by providing automatic
placement suggestions guided by user-controlled parameters. These
parameters, adjustable via a simple slider interface, allow users to
control the degree of modification from the current layout and to
prioritize specific types of scraps. In addition to automatic sugges-
tions, manual operations such as moving, rotating, and locking the
position of individual scraps are also supported. Furthermore, users
can return to the segmentation interface at any point to re-edit the
input shapes, akin to physically trimming fabric scraps during the
design process. Once the layout meets the user’s satisfaction, it can
be exported as an image file, which can then be printed and used
as a reference for real-world fabrication.

3.1 Preparation
3.1.1 Scrap registration. As a fundamental step, each fabric scrap
must be imported into the system in digital form. To support this
process, we developed a segmentation interface (Figure 3) that
allows users to manually define the desired portion of each pho-
tographed scrap by outlining it as a polygon, which provides greater
flexibility and reliability. For example, even if a scrap is stained,
users can intuitively “cut” out the usable portion, which is often
difficult to automate. After photographing each scrap from directly

above, with the fixed camera plane parallel to the surface, the user
launches the interface by clicking the Load Scraps button in ScrapRe-
Cover (Figure 4k). An appropriate scaling factor is then applied
based on the known distance between the camera and the pho-
tographed surface, and the coordinates of the polygon’s vertices are
imported into the system. This process effectively serves as a virtual
cutting operation, enabling only the selected portion of the scrap
to be represented and used as polygonal data within the system.
Users can return to this step at any time to re-edit the currently
loaded shape by clicking the Cut Scraps button (Figure 4k).

3.1.2 Target pattern. The user specifies a predefined target pattern,
depending on what they want to make, for example, a rectangular
pattern for making a tote bag or pillow case, or more complex
patterns for making a stuffed toy or other custom fabric items.

3.2 Components of ScrapReCover
Figure 4 shows the components of the user interface for ScrapRe-
Cover . It is implemented in C++ with the Siv3D library [Suzuki
2020]. This UI is composed of fivemain components: LayoutWorkspace
(top left, a-c), Available Scraps List (top right, d), Layout Control
Panel (bottom left, e-g), Placed Scraps List (bottom center, h), and
Scrap Control Panel (bottom right, i–k).

ScrapReCover: An Interactive Optimization System for Freeform Patchwork Layouts SCF ’25, November 20–21, 2025, Cambridge, MA, USA

Figure 5: Visualization of the optimization process. The layout gradually converges from an initial state with many overlapping
and out-of-bounds to a more packed configuration, where most are contained within the pattern and overlaps are reduced.

Figure 6: The Change Rate slider controls the extent to which
the layout is modified after optimization. (a) Lower values
maintain greater similarity to the current configuration,
while (b) higher values promote more significant changes.

3.2.1 Layout Workspace. The Layout Workspace, located at the
top left of the ScrapReCover interface, is the main area for arrang-
ing scraps onto the pattern (Figure 4a). It visualizes the results of
automatic layout suggestions while also supporting direct user in-
teraction. Users can manually reposition any placed scrap, rotate it
to any angle, or remove it by returning it to the Available Scraps List
(Figure 4d). A preview pane (Figure 4b) provides an overview of the
current layout, where placed regions are displayed in gray and un-
covered areas are highlighted in red. When multiple pattern sheets
are predefined, users can switch between them using the selector
button (Figure 4c), with the active sheet indicated in orange.

3.2.2 Available Scraps List. The Available Scraps List, located at the
top right of the ScrapReCover interface, displays unplaced scraps
as thumbnail previews (Figure 4d). Each scrap is annotated with
its current selection weight used in the optimization process. Users
can manually place a specific scrap by selecting it (highlighted in
green) and dragging it into the Layout Workspace.

3.2.3 Layout Control Panel. The Layout Control Panel, located at
the bottom left of the ScrapReCover interface, provides a set of global
controls for managing the layout. The Iterations slider (Figure 4e)
specifies the approximate duration of the optimization, while the

Figure 7: The Reg Shape Pref slider controls the type of scrap
shape prioritized during optimization. (a) Lower settings fa-
vor irregular shapes with non-uniform edges, whereas (b)
higher settings prioritizes regular shapes like rectangles.

Change Rate slider (Figure 4f) adjusts the degree of modification ap-
plied to the current layout. The control buttons (Figure 4g) include
the Optimize button, highlighted in yellow as a central feature of
our system, which initiates automatic layout suggestions based on
user-defined parameters.

3.2.4 Placed Scraps List. The Placed Scraps List, located at the bot-
tom center of the interface, contains all scraps currently placed in
the layout (Figure 4h). From this list, users can lock the position of
a selected one, as if centering an emblem or logo.

3.2.5 Scrap Control Panel. The Scrap Control Panel, located at the
bottom right of the interface, provides a set of controls for manag-
ing individual scrap. The Selection Priority slider (Figure 4i) deter-
mines how strongly the selected scrap in the Available Scraps List
is prioritized during the optimization process. The Reg Shape Pref
slider (Figure 4j) lets users choose whether to prioritize regular
shapes such as rectangles, or irregular ones like polygons with
non-uniform edges. The control buttons (Figure 4k) include Load
Scraps and Cut Scraps, which launch the segmentation interface for
importing new scraps or re-editing existing ones, and Erase Scraps,
which removes the currently selected scrap from the system.

3.3 Interactive Optimization
3.3.1 Overview of the Layout Optimization Process. Figure 5 shows
an example visualization of the optimization process for automatic
layout suggestions in ScrapReCover . Initially, many scraps extend

SCF ’25, November 20–21, 2025, Cambridge, MA, USA Kono et al.

beyond the pattern boundary, exhibit significant overlap, and a large
number of polygons are placed. As the optimization progresses, the
layout transitions to a state where most scraps are contained within
the pattern, overlaps are visibly reduced, and the number of placed
scraps decreases. In terms of optimization behavior, the layout
changes substantially between iterations in the early stages, while
such fluctuations gradually diminish over time, indicating conver-
gence toward an approximate solution. Note that if the placement
of certain scraps is locked via the Placed Scraps List, their occupied
areas are excluded from the optimization target, and the remaining
regions of the pattern are treated as the new effective boundary
for layout computation. In cases where multiple pattern sheets are
predefined in ScrapReCover , the optimization is applied only to
the currently active sheet, while the layouts on non-active sheets
remain fixed. Since each sheet functions independently, the layout
task can be divided into smaller, more manageable units.

3.3.2 Change Rate Slider. Figure 6 illustrates how the Change Rate
slider influences the behavior of the optimization process in ScrapRe-
Cover . This parameter enables users to adjust the extent to which
the system modifies the current layout when generating a new
one. A lower setting (Figure 6a) constrains the algorithm to minor
adjustments, thereby supporting gradual refinements. In contrast, a
higher setting (Figure 6b) permits more drastic and global changes,
promoting the system to explore a wider variety of layout config-
urations. This flexibility is valuable for balancing layout stability
with exploratory behavior during iterative design.

3.3.3 Reg Shape Pref Slider and Selection Priority Slider. Figure 7
illustrates how the Reg Shape Pref slider controls the type of scrap
shapes prioritized during optimization in ScrapReCover . Lower val-
ues favor irregular shapes with non-uniform or curved edges (Fig-
ure 7a), while higher values prioritize regular shapes with orthogo-
nal edges like squares or rectangles (Figure 7b). This global setting
allows users to steer the optimization according to aesthetic prefer-
ences or practical considerations such as ease of sewing, thereby
supporting a variety of design objectives. In addition to this global
control, the system provides the Selection Priority slider for indi-
vidual scraps. This parameter adjusts the likelihood of a specific
scrap being selected during optimization. The combined use of
both sliders enables users to guide the optimization toward using
scraps that align with their design intentions, both in terms of shape
characteristics and specific material selection.

3.4 Fabrication
Once the layout is finalized, ScrapReCover enables users to export
the result in multiple formats to support real-world fabrication.
The primary output is a high-resolution image of the layout, which
can be printed and used as a visual reference during the assem-
bly process. In addition, the system generates a structured list of
the placed scraps, including their polygonal identifiers, center co-
ordinates, rotation angles, and stacking order as an output. This
metadata facilitates accurate reconstruction of the digital design
in the real world. Fabrication methods may vary depending on the
user’s skill level and the complexity of the design. For example,
users can follow traditional patchwork workflows by sewing the

Figure 8: The overview of our problem statement

Figure 9: Preprocessing steps include shrinking scraps to
reserve seam allowance for real-world fabrication.

fabric pieces together according to the exported layout. Alterna-
tively, they may opt for a simpler approach by directly adhering
the scraps onto a base fabric using fusible interfacing or fabric glue.
This flexibility supports a variety of fabrication practices, ranging
from casual crafting to advanced textile craftsmanship.

4 ALGORITHM
4.1 Problem Statement
Before formalizing the problem, we collected approximately 300
real-world fabric scraps as part of this project. Our observations
revealed a high degree of variability in their shapes, with no con-
sistent patterns or clear tendencies. This highlights the need for a
robust method capable of handling arbitrary input shapes.

As shown in Figure 8, the problem can be formulated as follows:
Input:
• Scraps: A limited number of distinct and irregular polygons
(relatively small in size).
• Pattern: A limited number of distinct and irregular poly-
gons (relatively large in size).

Output:
• Placement suggestion for a subset of scraps on the pattern
(multiple suggestions are possible).

Problem Statement:
• Completely cover the pattern with a subset of scraps, allow-
ing overlaps while minimizing the "waste."
• "Waste" is defined as the total sum of overlaps between
scraps and the area of scraps extending outside the target
region.

Constraint:
• All areas of the pattern must be fully covered.

ScrapReCover: An Interactive Optimization System for Freeform Patchwork Layouts SCF ’25, November 20–21, 2025, Cambridge, MA, USA

Figure 10: Both (a) scraps and (b) pattern are rasterized into 2D pixel arrays to enable efficient search operations. (c) Whenever
the position or orientation of a scrap is modified, its rasterized representation is recomputed to ensure accurate processing
within the discrete search space.

Formally, we can state the problem like:

𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒 𝑤𝑎𝑠𝑡𝑒 (1)
𝑠 .𝑡 . no uncovered area in the pattern

Note that in addressing this problem, we do not aim to compute
a globally optimal solution, given the immense size of the solution
space. Instead, our randomized algorithm supports multiple runs,
each generating a plausible layout candidate. This approach enables
users to flexibly select the most suitable configuration according to
their individual preferences and design goals. Since ScrapReCover
applies optimization only to the currently active pattern sheet, the
following descriptions assume a single pattern sheet.

4.2 Preprocessing
To facilitate real-world sewingwithout relying on fabric glue, ScrapRe-
Cover automatically reserves seam allowances by slightly reducing
the perimeter of each fabric scrap during preprocessing, prior to
layout optimization. In the post-processing stage, when the layout
is exported as an image, the scraps are restored to their original
size (Figure 9). While these steps are not essential to the core op-
timization algorithm, it ensures that sufficient margin for seams
is preserved regardless of how the scraps are arranged, enhancing
usability in real-world fabrication.

Additionally, ScrapReCover employs a rasterization-based prepro-
cessing step when placing scraps onto the pattern. This approach
is motivated by the observation that, in real-world applications,
pattern shapes can be treated as relatively large blocks measured in
centimeters, making it reasonable to ignore minor geometric details.
To discretize the problem and avoid the combinatorial explosion of
possible placements in a continuous domain, each polygon is con-
verted into a 2D array of pixels, as illustrated in Figure 10. To ensure
precise coverage, two different rasterization criteria are applied.
For scrap shapes (Figure 10a), a pixel is marked as occupied only
if all four of its corners lie strictly within the scraps. In contrast,
for pattern shapes (Figure 10b), a pixel is marked as occupied if

at least one of its corners falls inside the pattern, excluding those
that are exactly on the boundary. This geometric abstraction offers
several advantages during optimization: it enables operations to be
performed using integer values instead of floating-point numbers
and simplifies tasks such as collision detection, placement valida-
tion, and other search operations. Note that whenever the position
or orientation of a scrap is modified, its rasterized representation
is recomputed to ensure accurate processing within the discrete
search space (Figure 10c).

4.3 Layout Optimization
4.3.1 Preliminaries. For the optimization process, we employed
simulated annealing (SA), a metaheuristic and probabilistic algo-
rithm introduced by Kirkpatrick et al. [1983] (refer to Appendix
A for details). As a metaheuristic, SA is not specialized for any
particular problem domain, requiring appropriate configuration of
the core functions and hyperparameters for the task [Blum and Roli
2003].

4.3.2 NEIGHBOR Function. The following five operations repre-
sent possible transitions that produce candidate states, as illustrated
in Figure 11:

(a) Move: A placed scrap is randomly selected and translated by
one pixel in one of the four cardinal directions (up, down, left, or
right).
(b) Rotate: A placed scrap is randomly selected and rotated by an
angle uniformly sampled from the interval [0◦, 360◦). After rotation,
the rasterized representation is updated accordingly.
(c) Swap: A placed scrap and an unplaced scrap are randomly se-
lected; their positions are exchanged, and the newly placed polygon
is rotated by a random angle in [0◦, 360◦), followed by calculating
its rasterized form.
(d) Erase: A placed scrap is randomly selected and removed from
the layout.

SCF ’25, November 20–21, 2025, Cambridge, MA, USA Kono et al.

Figure 11: Our NEIGHBOR function definition. (a)–(e) illus-
trate candidate operations that may be applied to the current
layout via a single transition.

(e) Add: An unplaced scrap is randomly selected, placed at a ran-
dom location, and rotated by a random angle within [0◦, 360◦), with
its rasterized representation computed.

The selection probabilities for each operation were determined
through hyperparameter tuning using Optuna [Akiba et al. 2019],
conducted on a dataset of generated polygons described inAppendix
B. The resulting probabilities were set to 𝑝move = 0.30, 𝑝rot =

0.29, 𝑝swap = 0.313, 𝑝erase = 0.081, and 𝑝add = 0.016. The method
for calculating the probability that each scrap is selected in these
operations is described in Section 4.5.

4.3.3 EVAL Function. The EVAL function assigns a scalar score to
each layout state based on three penalty components, each of which
reflects a different type of undesirable configuration, as illustrated
in Figure 12:
(a) Uncovered penalty (uc): Applies a penalty to each pixel within
the pattern area that remains uncovered by any scrap. This term
enforces the coverage constraint and is assigned a weight that is
substantially larger than those of the other two penalties.
(b) Outrange penalty (or): Assigns a penalty to any part of a
scrap that extends beyond the boundary of the predefined pattern,
thereby discouraging out-of-bounds placements.
(c) Overlap penalty (ol): Applies a penalty to each pixel within
the pattern area that is covered by more than one scrap, with the
penalty increasing linearly according to the number of overlapping
layers.

To enforce full coverage while minimizing material waste (which
closely corresponds to the combination of the outrange penalty and
the overlap penalty), we adopt an objective function that incorpo-
rates the coverage constraint as a penalty term, referred to as the un-
covered penalty, following the concept of the penalty method [Boyd
2004]. Rather than directly minimizing material waste under a hard
constraint, the uncovered penalty relaxes the coverage requirement
into a soft constraint by assigning a significant cost to any uncov-
ered regions. This encourages the optimization to avoid spending
too much effort on infeasible configurations while retaining the
flexibility to explore a broader solution space.

Throughout the optimization process based on this combined
objective function, the algorithm searches for layout configurations

Figure 12: Three penalties that reflect different types of unde-
sirable placements are incorporated into the EVAL function:
(a) uncovered penalty, (b) outrange penalty, and (c) overlap
penalty. In each illustration, green shapes represent placed
scraps on a gray pattern area, and red regions indicate pixels
where penalties are applied.

that fully cover the target pattern. Among those that satisfy the full
coverage condition, the system selects as the final output the con-
figuration with the lowest actual material waste, where the waste
is computed independently of the combined objective function. It is
important to note that the layout with the lowest evaluation score
based on this combined objective function does not necessarily
correspond to the layout with the lowest actual waste, and full
coverage is not always guaranteed during the search. Therefore,
ScrapReCover monitors not only the evaluation score but also the
actual material waste and the number of uncovered pixels at each
iteration. The system selects the final result from among the feasible
candidates that achieve full coverage in a single run, prioritizing
the one that minimizes material waste. This approach ensures both
constraint satisfaction and efficient material usage.

The formal definition of the EVAL function is presented as follows
(each penalty term is abbreviated as uc, or, and ol, respectively):

EVAL(𝑆𝑡𝑎𝑡𝑒) =
∑︁
(𝑥,𝑦)

(
Luc (𝑥,𝑦) + Lor (𝑥,𝑦) + Lol (𝑥,𝑦)

)
(2)

where

count[𝑥] [𝑦] = number of scraps placed at (𝑥,𝑦), (3)

Luc (𝑥,𝑦) =

𝑤uc, if (𝑥,𝑦) ∈ pattern ∧ count[𝑥] [𝑦] = 0,

0, otherwise,
(4)

Lor (𝑥,𝑦) =

𝑤or · count[𝑥] [𝑦], if (𝑥,𝑦) ∉ pattern,

0, otherwise,
(5)

Lol (𝑥,𝑦) =

𝑤ol ·

(
count[𝑥] [𝑦] − 1

)
, if (𝑥,𝑦) ∈ pattern ∧

count[𝑥] [𝑦] ≠ 0,
0, otherwise.

(6)

The value of penalty weights were determined through hyper-
parameter tuning using Optuna [Akiba et al. 2019], conducted on a
dataset of generated polygons described in Appendix B. The final
values were set as follows:𝑤uc = 13600,𝑤or = 250, and𝑤ol = 100.

ScrapReCover: An Interactive Optimization System for Freeform Patchwork Layouts SCF ’25, November 20–21, 2025, Cambridge, MA, USA

Figure 13: The rectangular similarity r is computed as the
ratio of a scrap’s area to that of itsminimumbounding box. (a)
Irregular scraps with non-uniform edges typically have low
r values close to 0, whereas (b) regular shapes like rectangles
tend to produce high r values close to 1.

4.4 Layout Modification Control
The TEMP and ACCEPT functions jointly govern the transition
behavior in simulated annealing by controlling whether the algo-
rithm accepts a proposed layout state. When a candidate layout
improves the evaluation score, it is always accepted. Otherwise,
acceptance occurs with a probability that decreases as the score
degradation increases and as the optimization progresses. We adopt
widely used formulations for both TEMP [Nourani and Andresen
1998] and ACCEPT function [Rutenbar 1989]:

TEMP(𝑖𝑡𝑒𝑟,𝑚𝑎𝑥𝐼𝑡𝑒𝑟) = 𝑇𝑠𝑡𝑎𝑟𝑡 + (𝑇𝑒𝑛𝑑−𝑇𝑠𝑡𝑎𝑟𝑡) ×
𝑖𝑡𝑒𝑟

𝑚𝑎𝑥𝐼𝑡𝑒𝑟

[Linear Decay]
(7)

ACCEPT(Δ𝑆𝑐𝑜𝑟𝑒,TEMP(𝑖𝑡𝑒𝑟,𝑚𝑎𝑥𝐼𝑡𝑒𝑟))

= min
(
1, exp

(
− Δ𝑆𝑐𝑜𝑟𝑒

TEMP(𝑖𝑡𝑒𝑟,𝑚𝑎𝑥𝐼𝑡𝑒𝑟)

))
(8)

In ScrapReCover , this mechanism is utilized to support user-
driven design exploration. The initial temperature 𝑇start is directly
linked to the Change Rate slider in the interface, allowing users to
influence the degree of layout modification during optimization.
Higher values of the slider result in greater structural changes to
the layout, encouraging more radical reconfigurations, whereas
lower values constrain the system to make smaller, more stable
adjustments. This coupling provides an interpretable mapping be-
tween algorithmic control and real-world user interactions. The
default values are set to 𝑇start = 17500 and 𝑇end = 5.

4.5 Selection Weight for Scraps
ScrapReCover defines a selection weight 𝑤 for each scrap so that
users can flexibly guide the optimization process according to their
preferences for specific shapes or scraps. This weight determines
how likely each scrap is to be selected during layout generation
and is influenced by two factors: the global preference for shape
regularity and an individually assigned selection priority.

In order to quantify the geometric regularity of each scrap, we
define a metric called rectangular similarity 𝑟 ∈ (0, 1], computed as
the ratio between the area of the scrap and the area of its minimum

Figure 14: In the workshop, each participant brought their
own fabric scraps, and interactively designed patchwork lay-
outs using ScrapReCover.

bounding box. Specifically, each scrap is rotated exhaustively in
small angular increments (we set this to 1◦), and the maximum
occupancy rate observed over all rotations is used as its 𝑟 value.
As a result, irregularly shaped scraps with non-uniform or high-
curvature edges tend to have low 𝑟 values close to 0 (Figure 13a).
On the other hand, regularly shaped scraps with straight and or-
thogonal edges produce higher values near 1. To incorporate user
preferences regarding shape regularity, a global parameter called
the Regular-shape Preference 𝑛 ∈ (−∞,∞) is introduced via the
Reg Shape Pref slider. This parameter modulates how strongly the
system favors regular or irregular shapes. When 𝑛 is large and posi-
tive, scraps with high 𝑟 are heavily favored since 𝑟𝑛 becomes much
larger. Conversely, negative values of 𝑛 favor scraps with lower 𝑟 ,
as 𝑟𝑛 becomes relatively larger for irregular shapes. If 𝑛 = 0, no
shape preference is applied since 𝑟𝑛 = 1 for all 𝑟 .

In addition to this global shape preference, users can assign
selection priority 𝑠 ≧ 0 to individual scraps using the Selection
Priority slider. This parameter adjusts the likelihood of a specific
scrap being selected in the layout, regardless of its shape.

The final selection weight𝑤 for each scrap is computed as:

𝑤 = 𝑠 · 𝑟𝑛

where 𝑠 is the individual selection priority and 𝑟𝑛 reflects the effect
of the global shape preference. This formulation provides a flexible
and interpretable way for users to control both the geometric style
and specific material usage in their designs.

During the optimization process, these weights are integrated
into the sampling steps of the NEIGHBOR function, specifically in
the swap, erase, and add operations (see Section 4.3.2). For unplaced
scraps, the computed weight 𝑤 is directly used to increase their
likelihood of being placed. For scraps already placed, the reciprocal
value (1/𝑤) is used to reduce their probability of being removed.
Here, all weights are normalized to form a valid probability distribu-
tion. This weighting mechanism enables ScrapReCover to produce
layouts that reflect both global shape preferences and user-driven
priorities for individual scraps.

5 EVALUATION
5.1 User Study
We conducted a workshop in which each participant brought their
own fabric scraps and interactively created patchwork layouts using
the prototype of ScrapReCover (Figure 14). For the user study, we
intentionally selected a simple square pattern to help participants

SCF ’25, November 20–21, 2025, Cambridge, MA, USA Kono et al.

Figure 15: Four examples from workshop participants who designed layouts using ScrapReCover (top) and subsequently
fabricated a tote bag in real based on their designs (bottom).

Table 1: Responses from 21 participants in the user study using a five-point scale (1 = strongly disagree, 5 = strongly agree).

Survey Statement 1 2 3 4 5

(1) I found the system easy to use. 1 2 1 15 2
(2) The optimization-based layout was better than manual placement. 0 2 7 8 4
(3) I was satisfied with the design suggestions generated by the system. 0 2 11 4 4

focus on the design process itself while producing a practical object
(a tote bag), and to emphasize the evaluation of the usability and
flexibility of the system, as well as the resulting designs.

At the beginning of the session, we provided an overview of the
study and explained how to use ScrapReCover . The participants
were instructed to design a layout for a square tote bag with a size
of 30 × 30𝑐𝑚, and we provided a reference fabric sheet to indicate
the target size. The participants were then given 50 minutes to
work on their designs, which included photographing their scraps
using a fixed camera and using the segmentation interface to define
the regions they wished to use from each scrap. During this time,
they freely explored the features of the system, composing layouts
through a combination of manual placement and automatic layout
suggestions generated by the optimization algorithm, using their
own fabric materials. Following the workshop, participants were
asked to complete a survey about their experience with the system
and were compensated with a 1000 yen (≒ 7 dollars) Amazon gift
card. Each session of the workshop accommodated up to three
groups simultaneously, and a total of 21 participants, recruited in
advance from the general public, took part in the entire workshop.

The participants exhibited a wide range of experiences, both in
terms of patchwork creation and in operating a design system.

Table 1 presents the results of a post-workshop questionnaire
in which 21 participants rated three aspects of the system using
a five-point scale (1 = very low, 5 = very high). Participants were
asked to evaluate (1) the overall usability of the system, (2) howwell
the optimization-based layout suggestions performed compared
to manual placement, and (3) how satisfied they were with the
design proposals generated by the system. In addition, there were
open-ended questions addressing topics such as the pros and cons
of each survey statement and suggestions for new features, with
the aim of highlighting both the strengths of the system and the
potential direction for future improvement.

Regarding usability, to the question ("Did you find the system
easy to use?"), the majority of participants responded positively.
Specifically, 15 out of 21 participants assigned a score of 4, indi-
cating a general consensus that the system was easy to use. In
contrast, responses to the usefulness of the optimization-based lay-
out compared to manual placement ("Was the optimization-based
layout better than manual placement?") were more varied. While 7

ScrapReCover: An Interactive Optimization System for Freeform Patchwork Layouts SCF ’25, November 20–21, 2025, Cambridge, MA, USA

Figure 16: The user can predefine any kind of target pattern,
as demonstrated in examples (a)–(c).

participants gave a neutral score of 3, 12 rated it positively (scores
of 4 or 5), suggesting differences in users’ preferences for manual
control versus automation.

For the question "Please describe any parts of the system you found
especially easy to use", participants highlighted several aspects 1.
P10 and P11 noted that the task of arranging the layout was straight-
forward, and that watching the optimization process in progress
was enjoyable (e.g., "The placement was done easily, and I enjoyed
watching it on the screen" (P10)). P2, P12, and P13 appreciated the in-
terface as user-friendly, describing it as accessible even to children
or beginners (e.g., "It was nice that the automatic placement button
seemed applicable and useful. Even children were able to operate it"
(P13)). These responses, along with the overall positive usability
ratings, indicate the intuitiveness of the system. P7, P9, P15, and
P16 emphasized the value of having an initial layout suggestion
when it can be difficult to generate ideas or decide on piece place-
ment (e.g., "Since it is quite difficult to come up with everything from
scratch, I appreciated that the system could generate something to
start with" (P15)). This underscores the benefit of combining man-
ual and automatic methods. P4 and P5 praised the workflow for
defining scrap contours, describing it as intuitive and effective in
capturing fabric shapes (e.g., "I thought it was good that plotting
allowed the fabric shape to be captured quite accurately" (P4)). Their
feedback highlights the usefulness of manual contour registration
as an accurate and flexible tool.

Regarding design quality, responses were mixed, with most par-
ticipants assigning mid-range scores. This suggests a need for fur-
ther refinement, particularly in how the system adapts layout sug-
gestions to users’ individual design preferences. When asked "What
other elements do you think could be considered to make the pro-
posed layout better?", participants proposed several directions for
improvement. P1, P16, P20, and P21 recommended incorporating
explicit design or color guidance (e.g., "I would like the system to also
recognize colors and make design suggestions [. . .] It would be nice if
styles such as cute or mature could be added as options" (P1)). P3 and
P14 highlighted the importance of considering color combinations
to enhance the aesthetic quality of the layout (e.g., "Patterns are not
taken into account. The appearance of colors and patterns is hard to
interpret" (P14)). Similar suggestions emerged in response to "Please
describe any features you would like to see added to the system." P1,
P3, and P14 requested optimization features that take color coor-
dination into account (e.g., "When characters are present, select the
face area to ensure it remains visible. Unify the overall color scheme"
(P14)). P15 and P21 proposed support for language-based input to
1The Japanese feedback was translated into English using ChatGPT.

Figure 17: Visualization of layout results generated by our
SA-based method, hill climbing (HC), and a naive random al-
location baseline across three datasets. Our method achieves
more densely packed layouts compared to the alternatives.

articulate design intentions (e.g., "Sometimes the optimization results
looked plain, or the accents ended up at the edges, so it would be nice
if I could provide some initial input, like ’I want it to look this way’"
(P21)). Collectively, this feedback suggests a demand for integrating
design considerations into the system, indicating a direction for
future work. Other participants proposed enhancements related
to system flexibility. P9 suggested that generating a rough layout
outline at the scrap registration could improve efficiency. This pref-
erence contrasts with those who appreciated the ability to define
contours manually (P4 and P5), indicating the potential benefit of
offering manual contouring as an optional feature rather than a
requirement. P10–P12, P18, and P19 requested the functionality to
interrupt the optimization process midway (e.g., "I couldn’t manage
to stop the optimization at the moment I felt, ’This is it!’ with a design"
(P12)). This feedback suggests that intermediate results during op-
timization may, in some cases, be preferable to users compared to
the final optimized outcome.

5.2 Visual Examples
5.2.1 Fabricated Product. Participants who wished to fabricate
their resulting layouts into physical tote bags were provided with
a full-scale printed version of their design, along with supplemen-
tary materials such as backing fabric and straps to support home
fabrication. Figure 15 presents four examples from workshop par-
ticipants who created tote bags (bottom) based on layouts designed
using ScrapReCover (top). Participants employed different fabrica-
tion methods: some participants (T1, T2) fabricated their designs by
sewing the fabric scraps together into a single fabric piece, while
others (T3, T4) created their tote bags by pasting the scraps onto
a base fabric. These completed artifacts demonstrate the practical
usability of our system in supporting real-world creation.

5.2.2 Pattern Shape Variation. ScrapReCover supports arbitrary
pattern shapes through the rasterization-based preprocessing de-
scribed in Section 4.1. Figure 16 illustrates its application to three
representative non-square patterns.

SCF ’25, November 20–21, 2025, Cambridge, MA, USA Kono et al.

5.3 Algorithm Evaluation

Algorithm 1 Naive Random Allocation of Scraps
1: 𝑃𝐷𝐹 ← Uniform 2D probability density map over 𝑝𝑎𝑡𝑡𝑒𝑟𝑛
2: while there are empty regions in 𝑝𝑎𝑡𝑡𝑒𝑟𝑛 do
3: 𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛(𝑥,𝑦) ← sample from 𝑃𝐷𝐹

4: Place a 𝑠𝑐𝑟𝑎𝑝 at 𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛(𝑥,𝑦)
5: Set 𝑃𝐷𝐹 [𝑖] [𝑗] = 0 for all (𝑖, 𝑗) covered by the placed scraps
6: Normalize 𝑃𝐷𝐹
7: end while

5.3.1 Performance. We conducted quantitative experiments using
a single 30 × 30 square pattern, which matches the size and shape
used in the workshop. As a case study, we used either the scrap
dataset collected during the workshop (composed of 431 scraps in
total) or a set of randomly generated polygons to ensure robustness.
The method for generating these polygons is described in Appendix
B. In this section, we omit the scrap shrinking and resizing oper-
ations described in the preprocessing step (Section 4.1), as they
do not affect the comparative results. The number of iterations
was fixed at 50,000, and the optimization process was repeated 100
times for each dataset with different random seeds, after which the
resulting waste values were compared. The average execution time
for one optimization run using the real-world scrap dataset was
approximately 28 seconds on a machine with an Intel(R) Core(TM)
Ultra 9 285K 3.70 GHz CPU and 32 GB of RAM. (Note that this value
also depends on the number and complexity of input scraps and
the predefined pattern.)

5.3.2 Comparison with Naive Methods. We compared our random-
ized algorithm with a naive one, described in Algorithm 1, which
repeatedly places scraps at random until no empty areas remain in
the pattern (this method was also used as the initial state for the
other two comparison algorithms). In this approach, the algorithm
attempts to avoid already occupied regions as much as possible
during scrap placement. Moreover, we also compared our method
with the hill climbing (HC) approach [Selman and Gomes 2006],
which was implemented by modifying our algorithm to allow state
transitions only when the evaluation score improves. We chose
HC because most previous approaches do not align with our goal
of enabling diverse outputs through a randomized algorithm with
tunable parameters. For comparison, in addition to the full dataset
of real scraps collected through the workshop (Real Scraps), we
also used two virtual scrap sets generated based on the method
described in Appendix B: one set consisting of 100 randomly gen-
erated polygons (Gen Polygons), and another set consisting of 100
perfect rectangles (Gen Rectangles).

The results are visualized in Figure 17 and summarized using box
plots in Figure 18 and tables in Table 2. These findings confirm that
our SA-based approach not only produces more densely packed and
visually refined configurations but also consistently achieves lower
average waste scores than the other two methods across all three
datasets. Furthermore, our method yields noticeably smaller stan-
dard deviations, indicating more stable and reliable performance.
These advantages hold not only for simpler geometric cases, such
as the rectangles-only dataset (Gen Rectangles), but also for more

Figure 18: Comparison between our SA-based method, hill
climbing (HC), and a naive random allocation baseline across
three datasets. In all datasets, our method outperformed the
others in reducing waste.

complex and irregular scrap shapes, demonstrating the robustness
and adaptability of our approach across varying input types.

6 CONCLUSION AND LIMITATIONS
We introduced ScrapReCover , an interactive design tool for gener-
ating freeform patchwork layouts from fabric scraps by formulat-
ing and solving a geometric covering problem using a simulated
annealing-based optimization method. The system allows users to
iteratively steer the randomized layout suggestions process through
intuitive parameter adjustments, seamlessly integrating automatic
optimization with manual refinement. A user study involving 21
participants demonstrated the practical usability of ScrapReCover ,
with users finding it both accessible and effective for creating origi-
nal designs. Quantitative comparisons further confirmed that our
optimization algorithm outperforms naive baselines by achieving
superior visual quality and reducing material waste more effec-
tively.

Meanwhile, several limitations remain in our current algorithm,
which offer opportunities for future work. First, incorporating 3D
constraints and enabling simultaneous modification of the pattern
itself, which is currently fixed, could better take advantage of the
characteristics of the problem. Second, allowing users to specify
design preferences or define color combinations prior to the opti-
mization process could enhance both the aesthetic and functional
aspects of the patchwork. Lastly, incorporating practical aspects
related to fabrication difficulty in real, such as explicitly consider-
ing seam length or the curvature of the scraps, could enhance the
feasibility of the designs generated by the system.

ACKNOWLEDGMENTS
This research is part of the results of Value Exchange Engineer-
ing, a joint research project between Mercari R4D Lab and RIISE
(Research Institute for an Inclusive Society through Engineering),
Japan Science and Technology Agency (JST) ASPIRE grant num-
ber JPMJAP2401, and Japan Society for the Promotion of Science
(JSPS) KAKENHI grant number JP23K19994. We also sincerely
thank Ochanomizu University and sciencepark.jp for their sup-
port in conducting the user study, and Siv3D for providing the
development framework.

ScrapReCover: An Interactive Optimization System for Freeform Patchwork Layouts SCF ’25, November 20–21, 2025, Cambridge, MA, USA

Table 2: Summary statistics of the resulting waste, comparing our SA-based method, hill climbing (HC), and a naive random
allocation baseline across three datasets: real scraps, generated polygons, and generated rectangles.

Real Scraps Gen Polygons Gen Rectangles

Naive HC Ours Naive HC Ours Naive HC Ours

Mean 2154.58 421.49 246.91 2241.17 442.07 344.64 1582.16 418.20 116.54
Med. 2123.00 429.50 236.00 2201.50 435.50 348.50 1564.00 416.00 112.00
Std. 387.42 104.87 83.05 443.31 100.95 60.09 212.88 71.79 36.39
Min 1416.00 179.00 81.00 1143.00 257.00 211.00 1086.00 226.00 32.00
Max 3826.00 730.00 555.00 3695.00 854.00 470.00 2170.00 658.00 208.00

REFERENCES
Takuya Akiba, Shotaro Sano, Toshihiko Yanase, Takeru Ohta, and Masanori Koyama.

2019. Optuna: A next-generation hyperparameter optimization framework. In
Proceedings of the 25th ACM SIGKDD international conference on knowledge discovery
& data mining. 2623–2631.

Berend Baas, David Bommes, and Adrien Bousseau. 2025. Shape Approximation by
Surface Reuse. In Computer Graphics Forum, Vol. 44. Wiley Online Library, e70204.

AL Bajuelos, Ana Mafalda Martins, S Canales, and G Hernández. 2009. Metaheuristic
approaches for the minimum vertex guard problem. In 2009 Third International
Conference on Advanced Engineering Computing and Applications in Sciences. IEEE,
77–82.

Anton Bakker and TomVerhoeff. 2022. Algorithms to Construct Designs for Foundation
Paper Piecing of Quilt Patchwork Layers. In 25th Annual Bridges Conference 2022:
Mathematics, Art, Music, Architecture, Cullture. Tessellations Publishing, 347–350.

Julia A Bennell and Jose F Oliveira. 2008. The geometry of nesting problems: A tutorial.
European journal of operational research 184, 2 (2008), 397–415.

Julia A Bennell and Xiang Song. 2010. A beam search implementation for the irregular
shape packing problem. Journal of Heuristics 16 (2010), 167–188.

Christian Blum and Andrea Roli. 2003. Metaheuristics in combinatorial optimization:
Overview and conceptual comparison. ACM computing surveys (CSUR) 35, 3 (2003),
268–308.

Ralf Borndörfer. 1998. Aspects of set packing, partitioning, and covering. Ph. D. Disser-
tation.

Stephen Boyd. 2004. Convex optimization. Cambridge UP (2004).
Chazelle. 1983. The bottomn-left bin-packing heuristic: An efficient implementation.

IEEE transactions on computers 100, 8 (1983), 697–707.
Vasek Chvatal. 1979. A greedy heuristic for the set-covering problem. Mathematics of

operations research 4, 3 (1979), 233–235.
Claudio Contardo and Alain Hertz. 2021. An exact algorithm for a class of geometric

set-cover problems. Discrete Applied Mathematics 300 (2021), 25–35.
Joseph C Culberson and Robert A Reckhow. 1994. Covering polygons is hard. J.

Algorithms 17, 1 (1994), 2–44.
Mark De Berg. 2000. Computational geometry: algorithms and applications. Springer

Science & Business Media.
Kathryn ADowsland. 1993. Some experiments with simulated annealing techniques for

packing problems. European Journal of Operational Research 68, 3 (1993), 389–399.
Harald Dyckhoff. 1990. A typology of cutting and packing problems. European journal

of operational research 44, 2 (1990), 145–159.
Robert J Fowler, Michael S Paterson, and Steven L Tanimoto. 1981. Optimal packing

and covering in the plane are NP-complete. Information processing letters 12, 3
(1981), 133–137.

Deborah S Franzblau and Daniel J Kleitman. 1984. An algorithm for covering polygons
with rectangles. Information and control 63, 3 (1984), 164–189.

A Miguel Gomes and José F Oliveira. 2006. Solving irregular strip packing problems
by hybridising simulated annealing and linear programming. European Journal of
Operational Research 171, 3 (2006), 811–829.

Clement Greenberg. 2018. Collage. InModern Art and Modernism. Routledge, 105–108.
Baosu Guo, Yu Zhang, Jingwen Hu, Jinrui Li, Fenghe Wu, Qingjin Peng, and Quan

Zhang. 2022. Two-dimensional irregular packing problems: A review. Frontiers in
Mechanical Engineering 8 (2022), 966691.

E Hopper and B Turton. 1999. A genetic algorithm for a 2D industrial packing problem.
Computers & Industrial Engineering 37, 1-2 (1999), 375–378.

Eva Hopper and Brian CH Turton. 2001. A review of the application of meta-heuristic
algorithms to 2D strip packing problems. Artificial Intelligence Review 16 (2001),
257–300.

Chi-Fu Huang and Yu-Chee Tseng. 2003. The coverage problem in a wireless sensor
network. In Proceedings of the 2nd ACM international conference on Wireless sensor
networks and applications. 115–121.

Yuki Igarashi and Jun Mitani. 2015. Patchy: An interactive patchwork design system.
In ACM SIGGRAPH 2015 Posters. 1–1.

David S Johnson. 1973. Near-optimal bin packing algorithms. Ph. D. Dissertation.
Massachusetts Institute of Technology.

Scott Kirkpatrick, C Daniel Gelatt Jr, and Mario P Vecchi. 1983. Optimization by
simulated annealing. science 220, 4598 (1983), 671–680.

Bongjin Koo, Jean Hergel, Sylvain Lefebvre, and Niloy J Mitra. 2016. Towards zero-
waste furniture design. IEEE transactions on visualization and computer graphics 23,
12 (2016), 2627–2640.

VS Anil Kumar and H Ramesh. 2003. Covering rectilinear polygons with axis-parallel
rectangles. SIAM J. Comput. 32, 6 (2003), 1509–1541.

Kin Chung Kwan, Lok Tsun Sinn, Chu Han, Tien-Tsin Wong, and Chi-Wing Fu. 2016.
Pyramid of arclength descriptor for generating collage of shapes. ACM Trans.
Graph. 35, 6 (2016), 229–1.

Mackenzie Leake, Gilbert Bernstein, and Maneesh Agrawala. 2022. Sketch-Based
Design of Foundation Paper Pieceable Quilts. In Proceedings of the 35th Annual
ACM Symposium on User Interface Software and Technology. 1–11.

Mackenzie Leake and Ross Daly. 2024. ScrapMap: Interactive Color Layout for Scrap
Quilting. In Proceedings of the 37th Annual ACM Symposium on User Interface
Software and Technology. 1–17.

Mackenzie Leake, Frances Lai, Tovi Grossman, Daniel Wigdor, and Ben Lafreniere.
2021. Patchprov: Supporting improvisational design practices for modern quilting.
In Proceedings of the 2021 CHI Conference on Human Factors in Computing Systems.
1–17.

Yifei Li, David E Breen, James McCann, and Jessica K Hodgins. 2019. Algorithmic
Quilting Pattern Generation for Pieced Quilts.. In Graphics Interface. 13–1.

Max Limper, Nicholas Vining, and Alla Sheffer. 2018. Box cutter: atlas refinement for
efficient packing via void elimination. ACM Trans. Graph. 37, 4 (2018), 153.

Chenxi Liu, Jessica Hodgins, and James McCann. 2017. Whole-cloth quilting patterns
from photographs. In Proceedings of the Symposium on Non-Photorealistic Animation
and Rendering. 1–8.

Jon McCormack and Monika Schwarz. 2024. Piecing Generative Patterns Into Con-
temporary Quilts. (2024).

Holly McQuillan. 2020. Digital 3D design as a tool for augmenting zero-waste fashion
design practice. International Journal of Fashion Design, Technology and Education
13, 1 (2020), 89–100.

Holly McQuillan, Jen Archer-Martin, Greta Menzies, Jo Bailey, Karl Kane, and E
Fox Derwin. 2018. Make/Use: A system for open source, user-modifiable, zero
waste fashion practice. Fashion Practice 10, 1 (2018), 7–33.

Jiří Minarčík, Sam Estep, Wode Ni, and Keenan Crane. 2024. Minkowski penalties: Ro-
bust differentiable constraint enforcement for vector graphics. In ACM SIGGRAPH
2024 Conference Papers. 1–12.

Yaghout Nourani and Bjarne Andresen. 1998. A comparison of simulated annealing
cooling strategies. Journal of Physics A: Mathematical and General 31, 41 (1998),
8373.

JF Oliveira, AM Gomes, and JS Ferreira. 2000. TOPOS – A new constructive algorithm
for nesting problems. OR SPEKTRUM 22 (2000), 263–284.

Anran Qi, Nico Pietroni, Maria Korosteleva, Olga Sorkine-Hornung, and Adrien
Bousseau. 2025. Rags2Riches: Computational Garment Reuse. In Proceedings of the
Special Interest Group on Computer Graphics and Interactive Techniques Conference
Conference Papers. 1–11.

Rob A Rutenbar. 1989. Simulated annealing algorithms: An overview. IEEE Circuits
and Devices magazine 5, 1 (1989), 19–26.

Daniel Saakes, Thomas Cambazard, Jun Mitani, and Takeo Igarashi. 2013. PacCAM:
material capture and interactive 2D packing for efficient material usage on CNC
cuttingmachines. In Proceedings of the 26th annual ACM symposium on User interface
software and technology. 441–446.

Bart Selman and Carla P Gomes. 2006. Hill-climbing search. Encyclopedia of cognitive
science 81, 333-335 (2006), 10.

Ticha Sethapakdi, Daniel Anderson, Adrian Reginald Chua Sy, and Stefanie Mueller.
2021. Fabricaide: Fabrication-aware design for 2d cutting machines. In Proceedings
of the 2021 CHI Conference on Human Factors in Computing Systems. 1–12.

SCF ’25, November 20–21, 2025, Cambridge, MA, USA Kono et al.

Algorithm 2 Simulated Annealing
1: 𝑐𝑢𝑟𝑆𝑡𝑎𝑡𝑒 ←− 𝐼𝑛𝑖𝑡𝑖𝑎𝑙𝑆𝑡𝑎𝑡𝑒

2: 𝑐𝑢𝑟𝑆𝑐𝑜𝑟𝑒 ←− EVAL(𝐼𝑛𝑖𝑡𝑖𝑎𝑙𝑆𝑡𝑎𝑡𝑒)
3: 𝑏𝑒𝑠𝑡𝑆𝑡𝑎𝑡𝑒 ←− 𝑐𝑢𝑟𝑆𝑡𝑎𝑡𝑒
4: 𝑏𝑒𝑠𝑡𝑆𝑐𝑜𝑟𝑒 ←− 𝑐𝑢𝑟𝑆𝑐𝑜𝑟𝑒
5: for 𝑖𝑡𝑒𝑟 = 1 to𝑚𝑎𝑥𝐼𝑡𝑒𝑟 do
6: 𝑛𝑒𝑥𝑡𝑆𝑡𝑎𝑡𝑒 ←− NEIGHBOR(𝑐𝑢𝑟𝑆𝑡𝑎𝑡𝑒)
7: 𝑛𝑒𝑥𝑡𝑆𝑐𝑜𝑟𝑒 ←− EVAL(𝑛𝑒𝑥𝑡𝑆𝑡𝑎𝑡𝑒)
8: Δ𝑆𝑐𝑜𝑟𝑒 ←− 𝑛𝑒𝑥𝑡𝑆𝑐𝑜𝑟𝑒 − 𝑐𝑢𝑟𝑆𝑐𝑜𝑟𝑒
9: if ACCEPT(Δ𝑆𝑐𝑜𝑟𝑒,TEMP(𝑖𝑡𝑒𝑟,𝑚𝑎𝑥𝐼𝑡𝑒𝑟)) then
10: 𝑐𝑢𝑟𝑆𝑡𝑎𝑡𝑒 ←− 𝑛𝑒𝑥𝑡𝑆𝑡𝑎𝑡𝑒
11: 𝑐𝑢𝑟𝑆𝑐𝑜𝑟𝑒 ←− 𝑛𝑒𝑥𝑡𝑆𝑐𝑜𝑟𝑒
12: if 𝑐𝑢𝑟𝑆𝑐𝑜𝑟𝑒 is better than 𝑏𝑒𝑠𝑡𝑆𝑐𝑜𝑟𝑒 then
13: 𝑏𝑒𝑠𝑡𝑆𝑡𝑎𝑡𝑒 ←− 𝑐𝑢𝑟𝑆𝑡𝑎𝑡𝑒
14: 𝑏𝑒𝑠𝑡𝑆𝑐𝑜𝑟𝑒 ←− 𝑐𝑢𝑟𝑆𝑐𝑜𝑟𝑒
15: end if
16: end if
17: end for
18: return 𝑏𝑒𝑠𝑡𝑆𝑡𝑎𝑡𝑒

Musashi Shinjo, Maria Larsson, and Hironori Yoshida. 2024. A Design and Fabrication
Workflow for Upcycling Leftover Fabrics as Mosaic Art. (2024).

Nadav Shragai and Gershon Elber. 2013. Geometric covering. Computer-Aided Design
45, 2 (2013), 243–251.

Ryo Suzuki. 2020. Siv3D: C++ Library for creative coding.
Alexander Teibrich, Stefanie Mueller, François Guimbretière, Robert Kovacs, Stefan

Neubert, and Patrick Baudisch. 2015. Patching physical objects. In Proceedings of
the 28th Annual ACM Symposium on User Interface Software & Technology. 83–91.

Kevin Tole, Rashad Moqa, Jiongzhi Zheng, and Kun He. 2023. A simulated annealing
approach for the circle bin packing problem with rectangular items. Computers &
Industrial Engineering 176 (2023), 109004.

Ludwig Wilhelm Wall, Alec Jacobson, Daniel Vogel, and Oliver Schneider. 2021.
Scrappy: Using scrap material as infill to make fabrication more sustainable. In
Proceedings of the 2021 CHI Conference on Human Factors in Computing Systems.
1–12.

Ruowang Zhang, Stefanie Mueller, Gilbert Louis Bernstein, Adriana Schulz, and
Mackenzie Leake. 2024. Wastebanned: Supporting zero waste fashion design
through linked edits. In Proceedings of the 37th Annual ACM Symposium on User
Interface Software and Technology. 1–13.

A SIMULATED ANNEALING
Simulated annealing (SA) is a metaheuristic and probabilistic al-
gorithm introduced by Kirkpatrick et al. [1983]. It improves upon
the basic hill climbing (HC) method, which accepts transitions to
neighboring states only if they yield a better score [Selman and
Gomes 2006]. Unlike HC, SA also allows transitions to worse states
with a probability that gradually decreases over time, enabling the
algorithm to escape local optima and explore a broader solution
space. The specific procedure is outlined in Algorithm 2 [Ruten-
bar 1989]. At each iteration, a candidate state is generated by the
NEIGHBOR function and evaluated using the EVAL function. The
decision to transition is then determined by the ACCEPT function,
which always approves better states and probabilistically accepts
worse states based on the current temperature defined by the TEMP
function, often referred to as the cooling schedule.

B POLYGON GENERATION METHOD
The method used to generate polygons, which are not necessarily
convex (corresponding to scraps), is outlined in Algorithm 3.

Algorithm 3 Non-Convex Polygon Generation
1: Input: 𝑣min, 𝑣max, 𝑟mean, 𝑟var
2: Output: List of 2D coordinates forming a non-convex polygon

3:
4: 𝑣 ← RandomInt(𝑣min, 𝑣max)
5: [𝑟min, 𝑟max] ← minmax(Normal(𝑟mean, 𝑟var, 2))
6: 𝑅 ← Uniform(𝑟min, 𝑟max, 𝑣) // radii
7: Θ← Uniform(0, 2𝜋, 𝑣) // arguments (angles)
8: Sort Θ // to ensure polygon is non-intersecting
9: for 𝑖 = 1 to 𝑣 do
10: 𝑥𝑖 ← 𝑅 [𝑖] · cos(Θ[𝑖])
11: 𝑦𝑖 ← 𝑅 [𝑖] · sin(Θ[𝑖])
12: 𝑃 [𝑖] ← (𝑥𝑖 , 𝑦𝑖)
13: end for
14: return 𝑃

In practice, each variable was assigned a value corresponding
to the intended size of the pattern. For the experiments reported
in Section 6.1, where the pattern was a 30 × 30 square, we used
the following settings: 𝑣min = 4, 𝑣max = 10, 𝑟mean = 15 for large
polygons, 𝑟mean = 7.5 for small polygons, and 𝑟var = 2.5 for both.

To prevent degenerate outputs, we imposed additional validity
checks. Specifically, polygons with bounding boxes narrower than
a certain threshold (e.g., width or height < 2.5 for large shapes and
< 1.0 for small shapes) are rejected. Furthermore, any polygon not
containing the origin is discarded to avoid exceptions.

For rectangle generation, the height and width were sampled
independently from a uniform distribution. Large rectangles used
the range [5.0, 20.0), and small rectangles used [5.0, 10.0). All rect-
angles were axis-aligned and centered at the origin.

Each shape was finally assigned a randomly sampled color from
a uniform RGB distribution over [0, 255]3. For each experiment, we
generated a dataset of 100 shapes, evenly divided into 50 large and
50 small instances.

C ABLATION STUDY ON LAYOUT
OPTIMIZATION

C.1 The effectiveness of NEIGHBOR function

Table 3: Ablation study of the NEIGHBOR function. Each row
shows the statistics when a specific operation is excluded.

Mean Med. Std. Min Max
Baseline 246.91 236.00 83.05 81.00 555.00
No Move 343.91 338.50 101.34 158.00 714.00
No Rotate 277.96 273.50 78.78 85.00 525.00
No Swap 428.11 416.50 126.66 120.00 703.00
No Add 240.38 242.50 95.55 83.00 435.00
No Erase 1559.07 1566.50 257.99 941.00 2183.00

As shown in Table 3 and Figure 19, we conducted an ablation
study using the real scraps dataset to evaluate the contribution of
each operation in the NEIGHBOR function, defined in Section 4.3.1.

ScrapReCover: An Interactive Optimization System for Freeform Patchwork Layouts SCF ’25, November 20–21, 2025, Cambridge, MA, USA

Table 4: Summary statistics for the ablation study by scaling parameters Unplaced, Outrange, and Overlap penalty in EVAL
function. Each parameter was scaled by ×10 and ÷10. The baseline corresponds to the default setting.

Baseline Uncovered Outrange Overlap

×10 ÷10 ×10 ÷10 ×10 ÷10
Mean 246.91 1730.00 2056.09 1241.52 370.48 1358.90 281.27
Med. 236.00 1818.00 2039.00 1360.50 339.50 1678.50 285.50
Std 83.05 639.29 400.63 852.39 118.13 914.86 85.13
Min 81.00 105.00 182.00 171.00 86.00 122.00 75.00
Max 555.00 3162.00 3140.00 2768.00 665.00 2986.00 489.00

Figure 19: Effect of removing each operation from theNEIGH-
BOR function.

Excluding each operation in turn, we observed that Erase is indis-
pensable; its removal caused a dramatic increase in mean waste
(from 246.91 to 1559.07). Removing Swap also significantly degraded
performance (mean = 428.11), likely due to its essential role in ef-
fectively replacing poorly placed polygons. Move had a noticeable
impact (mean = 343.91), while Rotate yielded a moderate decrease
in performance (mean = 277.96), as both are useful for local re-
finement. Interestingly, removing Add slightly improved the mean
waste (240.38), but increased variance (standard deviation = 95.55),
suggesting that while the solution becomes less stable, it may occa-
sionally yield better results. In fact, the median waste in this setting
(242.50) was slightly worse than the baseline (236.00), indicating
that performance is less consistent despite occasional improve-
ments. These results indicate that all five operations contribute to
efficient optimization, with Erase, Swap, andMove being particularly
critical.

C.2 The effectiveness of EVAL function
As shown in Figure 20, we conducted an ablation study on the EVAL
function by varying the relative magnitudes of the three penalties
(Uncovered, Outrange, and Overlap) defined in Section 4.3.2, using
the real scraps dataset. Specifically, each penalty was scaled by
factors of ×10 and ÷10 relative to the baseline configuration, and
the resulting impact on layout quality was quantified in terms of
waste. Table 4 summarizes the main findings. Notably, the baseline
achieved a mean waste of 246.91, while adjusting the penalties

Figure 20: Effect of scaling each penalty in the EVAL function
(Uncovered, Outrange, and Overlap) by factors of ×10 and ÷10,
compared to the baseline configuration.

in either direction led to considerable degradation. Reducing the
Uncovered penalty by a factor of ÷10 severely impaired layout com-
pleteness (2056.09), and increasing it to ×10 also resulted in high
waste (1730.00). For the Outrange penalty, scaling up produced a
mean waste of 1241.52, and scaling down yielded 370.48, both sub-
stantially worse than the baseline. Similarly, extreme scaling of the
Overlap penalty led to significant performance drops: increasing it
resulted in a meanwaste of 1358.90, and decreasing it yielded 281.27.
These results collectively highlight the importance of maintaining
carefully balanced penalty ratios, as improper weighting of Uncov-
ered, Outrange, or Overlap disrupts the ability to balance between
competing objectives, including complete coverage, boundary con-
tainment, and overlap minimization.

	Abstract
	1 Introduction
	2 Related Work
	2.1 Computational Design for Patchwork
	2.2 Designing for Low-Waste Production
	2.3 The Packing and Covering Problem

	3 System Overview
	3.1 Preparation
	3.2 Components of ScrapReCover
	3.3 Interactive Optimization
	3.4 Fabrication

	4 Algorithm
	4.1 Problem Statement
	4.2 Preprocessing
	4.3 Layout Optimization
	4.4 Layout Modification Control
	4.5 Selection Weight for Scraps

	5 Evaluation
	5.1 User Study
	5.2 Visual Examples
	5.3 Algorithm Evaluation

	6 Conclusion and Limitations
	Acknowledgments
	References
	A Simulated Annealing
	B Polygon Generation Method
	C Ablation Study on Layout Optimization
	C.1 The effectiveness of NEIGHBOR function
	C.2 The effectiveness of EVAL function

