
EUROGRAPHICS 2025 / A. Bousseau and A. Dai
(Guest Editors)

COMPUTER GRAPHICS forum
Volume 44 (2025), Number 2

Approximating Procedural Models of 3D Shapes
with Neural Networks: Supplementary Material

Ishtiaque Hossain1 I-Chao Shen2 Oliver van Kaick1

1 Carleton University, Canada
2 The University of Tokyo, Japan

1. Details of the primitive-based procedural model

We developed a procedural model which creates four classes of 3D
man-made furniture shapes from vectors of parameters. The classes
are beds, chairs, shelves and tables. In this section, we provide the
details of the procedural model.

The procedural model assembles primitive shapes with transfor-
mations applied to them, in order to create complex shapes. In our
procedural model, we use the cube primitive and the cylinder prim-
itive. The transformations applied to the primitives, i.e., scaling, ro-
tation, and translation, dictate the size, orientation and location of
the primitives, respectively. Both the selection of the primitives and
the transformations are derived from the parameter vector passed to
the procedure.

As mentioned before, the parameter vector is a mix of differ-
ent types of individual parameters. Parameters can be continuous
values, in which case, the corresponding parameter is normalized.
Discrete parameters can be binary, integer intervals, or finite sets.

The final shape is in triangle mesh format. In some cases, ad-
ditional operations are performed on the primitives which changes
their geometry. For instance, edges can be bevelled in order to give
certain parts of the shapes more realistic look, or faces can be ex-
truded in order to simplify the creation of parts. Physic-based sim-
ulation is used as well, to create parts such as pillows.

To facilitate the creation of primitives and performing various
operations on them, we use the BMesh module (Blender’s internal
mesh editing API) available in Python. More details on the mod-
ule can be found at https://docs.blender.org/api/
current/bmesh.html. In the following sections, we provide
details about each class of shapes with examples.

1.1. Bed

The procedure for creating the bed shapes has 67 lines of code and
accepts 7 parameters.

• Width to height ratio: Controls the aspect ratio of the bed, the
depth is fixed.

• Leg height: Controls the height of the legs.
• Headboard height: Controls the height of the headboard.

• Frontboard height: Controls the height of the frontboard.
• Mattress height: Controls the height of the mattress.
• Leg type: Controls which type of leg the bed has, any of {basic,

solid, box}.
• Number of pillows: Controls the number of pillows on the bed,

can be in the range [0, 2].

Figure 1 shows examples of bed shapes where the effects of each
parameter on the output shapes is illustrated.

1.2. Chair

The procedure for creating the chair shapes has 114 lines of code
and accepts 6 parameters.

• Width to height ratio: Controls the aspect ratio of the chair.
• Depth: Controls the depth of the chair.
• Leg height: Controls the height of the legs.
• Leg type: Controls which type of leg the chair has, any of {basic,

round, support, office}.
• Arm type: Controls which type of arm the chair has, any of

{none, basic, solid, office}.
• Back type: Controls which type of back the chair has, any of

{basic, horizontal bars, vertical bars, office}.

Figure 2 shows examples of chair shapes where the effects of each
parameter on the output shapes is illustrated.

1.3. Shelf

The procedure for creating the shelf shapes has 51 lines of code and
accepts 8 parameters.

• Width to height ratio: Controls the aspect ratio of the shelf.
• Depth: Controls the depth of the shelf.
• Leg height: Controls the height of the legs.
• Number of rows: Controls the number of rows in the shelf, can

be in the range [1, 5].
• Number of columns: Controls the number of columns in the

shelf, can be in the range [1, 5].
• Filled back: Binary parameter, indicating whether the shelf has a

solid or open back.

© 2025 The Authors. Computer Graphics Forum published by Eurographics - The European Asso-
ciation for Computer Graphics and John Wiley & Sons Ltd.
This is an open access article under the terms of the Creative Commons Attribution-NonCommercial-
NoDerivs License, which permits use and distribution in any medium, provided the original work is
properly cited, the use is non-commercial and no modifications or adaptations are made.

https://orcid.org/0000-0002-8153-0809
https://orcid.org/0000-0003-4201-3793
https://orcid.org/0000-0001-9869-6832
https://docs.blender.org/api/current/bmesh.html
https://docs.blender.org/api/current/bmesh.html

2 of 7 I. Hossain, I. Shen, and O. van Kaick / Approximating Procedural Models of 3D Shapes with Neural Networks

• Filled sides: Binary parameter, indicating whether the shelf has
solid or open sides.

• Filled columns: Binary parameter, indicating whether adjacent
columns have solid or open separation.

Figure 3 shows examples of shelf shapes where the effects of each
parameter on the output shapes is illustrated.

1.4. Table

The procedure for creating the table shapes has 60 lines of code and
accepts 6 parameters.

• Width to height ratio: Controls the aspect ratio of the table.
• Depth: Controls the depth of the table.
• Top thickness: Controls the thickness of the tabletop.
• Leg thickness: Controls how thick the table legs are.
• Rounded top: Binary parameter, indicating whether the top is

rounded or rectangular.
• Leg type: Controls which type of leg the table has, can be any of

{basic, support, round, split, square, solid}.

Figure 4 shows examples of table shapes where the effects of each
parameter on the output shapes is illustrated.

2. Details of the node graph-based procedural model

The procedural model for creating sofa shapes is a third-party
Blender-based model where shapes are created using a node graph.
The node graph is an interconnected network of nodes, where each
node represents an operation. Nodes can have input and output.
Among other types of nodes, the node graph heavily utilizes ge-
ometry nodes, which are responsible for changing shape geometry.
The inputs to the node graph are numeric values representing the
parameters to the procedural model and the node graph itself repre-
sents the procedure. The output of the node graph is the final shape,
represented in triangle mesh format. The node graph in this partic-
ular case has 19 adjustable parameters. However, allowing all of
them to change freely often leads to unrealistic strange shapes. To
remedy this issue, we set 7 of these parameters to constant values
and let the other parameters vary within allowable ranges. Below is
a list of these 12 parameters.

• Depth: Depth of the sofa from front to back.
• Legs height: Height of the legs.
• Back/side height: Height of the sofa back and the sides (if any).
• Side thickness: Width of of the sides (if any).
• Cushion thickness: Thickness of the seat cushions.
• Back cushion height: Height of the back cushions.
• Back cushion thickness: Thickness of the back cushions.
• Side cushion thickness: Thickness of the side cushions (if any).
• Side cushion height: Height of the side cushions (if any).
• Number of sides: The number of sides the sofa has. The values

are integers in the range [0, 2].
• Number of cushions: The number of seat-back cushion pairs.

The values are integers in the range [0, 2].
• Number of side cushions: Number of cushions the sofa has on

its sides. The values are integers in the range [0, 2].

Figure 5 shows examples of sofa shapes where the effects of each
parameter on the output shapes is illustrated.

Table 1: Additional information on the shapes generated by the
two procedural models.

Class Bed Chair Shelf Table Sofa

Avg # of vertices 1,224 338 170 69 7,244
Avg # of faces 2,436 657 284 121 14,462
of parts 5 4 5 2 6

Table 2: Parameter prediction error for each shape category for
various configurations of the proposed network.

Bed Chair Shelf Table Sofa

Task 2
scalar 0.02 0.01 0.03 0.05 0.10
binary - - 0.93 1.00 -
integer 0.56 0.99 0.95 0.99 0.98

Task 3
scalar 0.09 0.05 0.09 0.14 0.21
binary - - 0.83 0.98 -
integer 0.59 0.94 0.80 0.84 0.81

Task 4
scalar 0.42 0.19 0.20 0.28 0.39
binary - - 0.58 0.64 -
integer 0.28 0.46 0.23 0.56 0.40

3. Statistics of generated shapes

Table 1 reports some additional information on the shapes that are
created by the two procedural models, such as the average number
of vertices/faces and the number of parts for each class of shapes.

4. Additional Experimental Results

4.1. Parameter Prediction Error

In this section, we present quantitative results from the experiments
where our network was configured to infer parameters for unseen
shapes in various settings. Table 2 shows the performance of our
network when predicting parameters. Task 2 refers to parameter
prediction from voxel-grids directly, Task 3 also refers to param-
eter prediction from voxel-grids, but using optimization. Finally,
Task 4 refers to parameter prediction from silhouette images using
optimization. For scalar parameters, we report the average Mean
Absolute Error (MAE) which is normalized to 1.0. For both binary
and integer parameters, we report the average F1 score.

4.2. Comparison with ShapeAssembly

In this section, we present additional qualitative results from the
comparison between our method and ShapeAssembly. Figure 6
shows 30 examples where we select shapes from the ShapeNet
dataset and reconstruct them using both ShapeAssembly and our
method. It can be seen that, in some cases, ShapeAssembly per-
forms better, while in other cases, our method works better. One
advantage of our method is that the reconstruction is always a valid
shape, since the final reconstruction is performed using the original
procedural model. On the other hand, ShapeAssembly can produce
reconstructions with bad geometry.

© 2025 The Authors.
Computer Graphics Forum published by Eurographics and John Wiley & Sons Ltd.

I. Hossain, I. Shen, and O. van Kaick / Approximating Procedural Models of 3D Shapes with Neural Networks 3 of 7

leg heightwidth to height ratio headboard height frontboard height mattress height leg type number of pillows

0

1

2

basic

solid

box

0.0

0.5

1.0

0.0

0.5

1.0

0.0

0.5

1.0

0.0

0.5

1.0

0.0

0.5

1.0

Figure 1: Examples of bed shapes created by the primitive-based procedural model.

width to height ratio depth leg height leg type arm type back type

0.0

0.5

1.0

basic

round

support

office

none

basic

solid

office

basic

horizontal bars

vertical bars

office

0.0

0.5

1.0

0.0

0.5

1.0

Figure 2: Examples of chair shapes created by the primitive-based procedural model.

© 2025 The Authors.
Computer Graphics Forum published by Eurographics and John Wiley & Sons Ltd.

4 of 7 I. Hossain, I. Shen, and O. van Kaick / Approximating Procedural Models of 3D Shapes with Neural Networks

width to height ratio depth leg height number of rows number of columns filled back filled sides filled columns

0.0

0.5

1.0

1

2

3

4

5

1

2

3

4

5

false

true

false

true

false

true

0.0

0.5

1.0

0.0

0.5

1.0

Figure 3: Examples of shelf shapes created by the primitive-based procedural model.

© 2025 The Authors.
Computer Graphics Forum published by Eurographics and John Wiley & Sons Ltd.

I. Hossain, I. Shen, and O. van Kaick / Approximating Procedural Models of 3D Shapes with Neural Networks 5 of 7

width to height ratio depth top thickness leg thickness rounded top leg type

0.0

0.5

1.0

false

true

basic

support

round

split

square

solid

0.0

0.5

1.0

0.0

0.5

1.0

0.0

0.5

1.0

Figure 4: Examples of table shapes created by the primitive-based procedural model.

© 2025 The Authors.
Computer Graphics Forum published by Eurographics and John Wiley & Sons Ltd.

6 of 7 I. Hossain, I. Shen, and O. van Kaick / Approximating Procedural Models of 3D Shapes with Neural Networks

depth leg height back/side height side thickness cushion thickness back cushion height

0.0

0.5

1.0

back cushion
thickness

side cushion
thickness side cushion height number of sides number of cushions side cushions

0.0

0.5

1.0

0.0

0.5

1.0

0.0

0.5

1.0

0.0

0.5

1.0

0.0

0.5

1.0

0.0

0.5

1.0

0.0

0.5

1.0

0.0

0.5

1.0

0

1

2

0

1

2

0

1

2

Figure 5: Examples of sofa shapes created by the node graph-based procedural model.

© 2025 The Authors.
Computer Graphics Forum published by Eurographics and John Wiley & Sons Ltd.

I. Hossain, I. Shen, and O. van Kaick / Approximating Procedural Models of 3D Shapes with Neural Networks 7 of 7

O
rig

in
al

 s
ha

pe
R

ec
on

st
ru

ct
ed

 b
y

Sh
ap

eA
ss

em
bl

y
R

ec
on

st
ru

ct
ed

 b
y

ou
r

m
et

ho
d

O
rig

in
al

 s
ha

pe
R

ec
on

st
ru

ct
ed

 b
y

Sh
ap

eA
ss

em
bl

y
R

ec
on

st
ru

ct
ed

 b
y

ou
r

m
et

ho
d

O
rig

in
al

 s
ha

pe
R

ec
on

st
ru

ct
ed

 b
y

Sh
ap

eA
ss

em
bl

y
R

ec
on

st
ru

ct
ed

 b
y

ou
r

m
et

ho
d

Figure 6: Comparison between reconstruction by ShapeAssembly and our method on selected shapes.

© 2025 The Authors.
Computer Graphics Forum published by Eurographics and John Wiley & Sons Ltd.

