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Abstract—Neural Radiance Field (NeRF) has emerged as a versatile scene
representation. However, it is still unintuitive to edit a pretrained NeRF because
the network parameters and the scene appearance are often not explicitly
associated. In this paper, we introduce the first framework that enables users to
retouch undesired regions in a pretrained NeRF scene without accessing any
training data and category-specific data prior. The user first draws a free-form
mask to specify a region containing the unwanted objects over an arbitrary
rendered view from the pretrained NeRF. Our framework transfers the user-drawn
mask to other rendered views and estimates guiding color and depth images
within transferred masked regions. Next, we formulate an optimization problem
that jointly inpaints the image content in all masked regions by updating NeRF’s
parameters. We demonstrate our framework on diverse scenes and show it
obtained visually plausible and structurally consistent results using less user
manual efforts.

Introduction
Recent advancements in neural rendering, such as
Neural Radiance Fields (NeRF) [1], has emerged as
a powerful representation for the task of novel view
synthesis, where the goal is to render unseen view-
points of a scene from a given set of input images.
NeRF encodes the volumetric density and color of
a scene within the weights of a coordinate-based
multi-layer perceptron. Several follow-up works extend
original NeRF to handle different tasks, such as pose
estimation [2], deformable 3D reconstruction [3], and
modeling dynamic scenes [4].

Though NeRF achieves great performance on
photo-realistic scene reconstruction and novel view
synthesis, there remains enormous challenges in edit-
ing the geometries and appearances of a scene rep-
resented by a pretrained NeRF model. First, a user
needs to edit on multiple rendered views to edit the
whole scene which is often challenging because of
the ambiguous correspondences of the edited regions
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across multiple views. Second, because millions of
parameters are used in a pretrained NeRF model, it is
unclear which parameters control the different aspects
of the rendered scene and how to change the param-
eters according to the sparse local user input. There
are some early attempts on enabling users to perform
object-level [5] or attribute-level [6] editing over NeRF
models. However, these methods require additional
category-level or object-level conditioned training and
additional data to support the desired editings.

In this paper, we focus on the free-form inpainting
problem on a pretrained NeRF model, i.e., removing
unwanted regions or objects using a free-form mask
in a 3D scene represented by a pretrained NeRF.
Although we can ask a user to provide a mask and
the inpainted image for each rendered view, and use
them for training a new NeRF, there are several disad-
vantages. First, it is labor-intensive to provide masks
for every rendered view. Second, there will be visual in-
consistency across different inpainted views introduced
by separate inpaintings.

To address these issues, we propose a frame-
work to assist users in removing unwanted regions
or objects by updating a pretrained NeRF. Given a
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FIGURE 1: Given a pretrained NeRF model, a user can (a) choose an arbitrary view and (b) draw a free-form
mask to specify the unwanted region or object in the 3D scene. Our framework optimizes the parameters of the
pretrained NeRF based on the user-drawn mask and removes the unwanted object in the masked region. The
optimized NeRF synthesizes the inpainted results that match the ground truth from different views. (Noted that
the user-chosen view is different from view A and view B.) Please refer to the supplementary videos for video
results.

pretrained NeRF, a user first draws a free-form mask to
specify the unwanted region over an arbitrary rendered
view. Our framework then renders a couple of views
sampled from the pretrained NeRF based on a pre-
set trajectory, transfers the user-drawn mask to these
sampled views using a video object segmentation
method [7], and generates (i) guiding color images
using [8] and (ii) guiding depth images using Bilateral
Solver [9] within these masked regions. Noted that our
framework is agnostic to the methods chosen, i.e., we
can use any existing method for transferring the mask
and generating the guiding color and depth images.
Finally, we formulate an optimization problem that
jointly inpaints the image content within the transferred
masked regions with respect to the guiding color and
depth images. Our optimization formulation inpaint a
pretrained NeRF model using any NeRF architectures,
unlike concurrent NeRF inpainting works [10], [11]
require to train additional components.

We demonstrate our framework on several scenes
represented by pretrained NeRFs in LLFF dataset [12],
and show that our framework generates visually plau-
sible and consistent results. We also demonstrate our
experiments on a custom dataset to show the correct-
ness between inpainted results and ground truth.

To sum up, we make the following contributions:

• we present the first framework that enables
users to retouch undesired regions in a pre-
trained NeRF scene without accessing any train-
ing data and category-specific data prior.

• we gather a custom dataset with ground truth
inpainting results to quantitatively evaluate the

NeRF inpainting results.

Related Work

Novel view synthesis
Constructing novel views of a scene captured by mul-
tiple images is a long-standing problem in computer
graphics and computer vision. Neural Radiance Fields
(NeRF) [1] uses a multi-layer perceptron (MLP) and
positional encoding to model a radiance field at an
unprecedented level of fidelity.

These recent advances greatly improve the prac-
tical use of NeRF. However, it is still unintuitive
how a user can edit a pretrained NeRF model. The
main reason is that the neural network of a NeRF
model has millions of parameters. Which parameters
control the different aspects of the rendered shape
and how to change the parameters to achieve de-
sired edits are still unknown. Previous works en-
able users to select certain object [13], duplicate
and move object [14], [15] and edit a NeRF model
using strokes [5] directly. However, these methods
require learning additional category-level or object-
level conditional radiance fields to facilitate such ed-
its. Unlike these methods, our framework requires
neither additional category-specific training data nor
training procedures for removing unwanted objects or
regions in a pretrained NeRF model. Our method and
concurrent NeRF inpainting works [10], [11] require
user-provided masks while assuming different input
amounts. Mirzaei et al. [10] take the captured RGB
image sequence and sparse user annotations on a
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FIGURE 2: (a) Given a pretrained NeRF FΘ, a user specifies an unwanted region on a user-chosen view with a
user-drawn mask. Our framework then sampled initial color images and initial depth images from the pretrained
NeRF FΘ, and generates both guiding color images and guiding depth images. (b) Our framework updates Θ

(the NeRF model parameters) by optimizing both color-guiding loss (Lcolor) and depth-guiding loss (Ldepth). (→
denotes rendering a view from FΘ and → denotes updating Θ by optimizing the losses.)

single view. Weder et al. [11] take the captured RGB-
D image sequence and per-frame masks of the object
to be removed. Unlike these methods, our method fo-
cuses on inpainting a pretrained NeRF directly without
accessing the training image sequences, and no need
for per-frame object masks. Although the transferred
masks may not always be of perfect quality, our method
can use manually-annotated masks as input instead.

Image inpainting
In recent years, two broad approaches to image in-
painting have existed. Patch-based method [16] fills
the holes by searching for patches with similar low-
level image features such as RGB values. The search
space can be the non-hole region of the input im-
age or from other reference images. The inpainted
results are obtained by a global optimization after the
relevant patches are retrieved. These methods often
fail to handle large holes where the color and texture
variance is high. Meanwhile, these methods often can-
not make semantically aware patch selections. Deep
learning-based methods often predict the pixel values
inside masks directly in a semantic-aware fashion.
Thus they can synthesize more visually plausible con-
tents, especially for images like faces [17] and natu-
ral scenes [18]. However, these methods often focus
on regular masks only. To handle irregular masks,
researchers have proposed innovative solutions, such
as partial convolution [19], which involves the mask-
ing and re-normalized of convolutions to only utilize
valid pixels. Another promising approach is LaMa [20],
which is a novel inpainting network that can effec-

tively inpaint irregular regions using fast Fourier con-
volutions. MST inpainting [8] further considers both
edge and line structure to synthesize more reasonable
results. In this work, we use MST inpainting network
to obtain the guiding inpainted results because of
its superior performance on inpainting images while
preserving structure. Noted that our framework can re-
place the MST inpainting with other inpainting methods
since we only used the inpainted results as a guiding
signal for our optimization problem.

Method
In this section, we first summarize the mechanism of
NeRF [1] and then formulate our problem setting.

Preliminaries: Neural Radiance Field (NeRF)
NeRF is a continuous volumetric radiance field FΘ :
(x, d) → (c,σ) represented by a MLP network with Θ

as its weights. It takes a 3D position x = (x , y , z) and
a 2D viewing direction d = (θ, ϕ) as input and outputs
volume density σ and directional emitted color c. NeRF
renders the color of each camera ray passing through
the scene by computing the volume rendering integral
using numerical quadrature. The expected color Ĉ(r)
of camera ray r(t) = o + td from the camera position o
to the viewing direction d is defined as:

Ĉ(r) =
N∑

i=1

T (ti )(1 − exp (−σ(ti )δi ))c(ti ), (1)

where T (ti ) = exp (−
i−1∑
j=1

σ(tj )δj ) , (2)
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N denotes the total quadrature points sampled be-
tween the near plane tn and far plane tf of the cam-
era, and δi = ti+1 − ti is the distance between two
adjacent points. We denote the color and density at
point ti produced by NeRF model FΘ as c(ti ) and σ(ti ),
respectively.

Using the above differentiable rendering equation,
we can propagate the errors and update Θ through
mean square error:

Lmse =
∑
r∈R

∥(Ĉc(r) − C(r))∥2
2 + ∥(Ĉ f (r) − C(r))∥2

2, (3)

where R is a ray batch, C(r), Ĉc(r), Ĉ f (r) are the
ground truth, coarse volume predicted, and fine volume
predicted colors for ray r, respectively. Beside the
predicted color, the estimated depth for ray r is defined
as D̂(r) =

∑N
i=1 T (ti )(1 − exp (−σ(ti )δi ))ti . For simplicity,

we further define F image
Θ : o → I and F depth

Θ : o → D
as functions that take a camera position o as input,
and outputs the rendered color image I and estimated
depth image D of a pretrained NeRF model FΘ.

NeRF-In overview
Given a pretrained NeRF model FΘ, a user can specify
an unwanted region by drawing a mask Mu over a user-
chosen rendered view Iu = F image

Θ (ou), where Mu =
{1, 0} for pixels outside (1) or inside (0) the masked
region, and ou is the user-chosen camera position. Our
goal is to obtain an updated NeRF FΘ̃ such that the
unwanted region masked by Mu is removed in every
rendered view. As shown in Figure 2, our method first
samples K camera positions O = {os|s = 1...K} along
the test-set camera trajectory used in LLFF [12]. We
set K = 24 throughout the results we show in this
paper. For each camera position os, we rendered a
color image Is and a depth image Ds using FΘ and
obtained all rendered views I = {Is|s = 1...K} and their
depth images D = {Ds|s = 1...K}. One can potentially
remove the unwanted region specified by Mu using the
following naive method. First, the contents within the
transferred masked regions on all sampled rendered
views are removed. Then, Θ is updated using only the
image content outside all transferred masked regions
by optimizing the “masked mse (mmse)” function mod-
ified from Equation 3:

Lmmse =
∑
r∈R

∥(Ĉc(r) − C(r)) ⊙ M(r)∥2
2+

∥(Ĉ f (r) − Ci (r)) ⊙ M(r)∥2
2, (4)

where M(r) is the mask on the view where the ray r is
sampled from, which can be transferred from the user-
drawn mask Mu or drawn by the user directly on all

views. However, because there is no explicit guidance
on what image content and structure should be in the
masked region, the unwanted region will remain in the
result of optimizing Equation 4.

To address this issue, our method intend to provide
explicit guidance of the appearance and the structure
in the masked region during the update of the original
NeRF. As preprocessing, our method takes the user-
drawn mask Mu , sampled rendered views I and their
depth images D as input, and outputs following guiding
materials:

• user-chosen guiding color and depth images: IG
u

and DG
u ;

• transferred masks: M = {Ms|s = 1...K};
• guiding sampled color and depth images: IG =

{IG
s |s = 1...K} and DG = {DG

s |s = 1...K}.

Using these guiding materials, our method obtains up-
dated parameters Θ̃ by optimizing our NeRF inpainting
(NeRF-In) formulation: Ω(Mu , IG

u , M, DG).

Guiding material generation
To generate the guiding materials for optimizing the
NeRF-In formulation, the user-drawn mask Mu should
be first transferred to be Ms that covers the same
region as Mu for each sampled rendered view Is (where
a video object segmentation method (STCN) [7] is
used). Note that we apply the video object segmenta-
tion method on the images generated by a pretrained
NeRF, not the captured images; thus, these images
can be considered as close frames. With the trans-
ferred masks Ms, we need to generate the guiding color
and depth images IG

s and DG
s . The guiding color image

generation can be described as

IG
s = ρ(Is, Ms), (5)

where ρ is a single image inpainting method (where the
MST inpainting network [8] is used). After obtaining IG

s ,
we can obtain the guiding depth image using

DG
s = τ (Ds, Ms, IG

s ), (6)

where τ is a depth image completion method (where
the Fast Bilateral solver [9] is used). For the user-
chosen rendered view Iu , i.e., where the user drew the
mask Mu , we generate the user-chosen guiding color
and depth images IG

u and DG
u using Equation 5 and

Equation 6, respectively. Noted that our framework can
replace ρ to any other single image inpainting method
and τ to any other single depth image completion
method.
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NeRF inpainting optimization
We obtain the updated parameters Θ̃ that removes the
unwanted region in the 3D scene by optimizing

Θ̃ := arg min
Θ

(Lcolor(Θ) + Ldepth(Θ)). (7)

Color-guiding loss The color-guiding loss is defined
as

Lcolor(Θ) =
∑

o∈Oin

lcolor(o,Θ, (1 − Mo))︸ ︷︷ ︸
inside the mask

+
∑
o∈O

lcolor(o,Θ, Mo)︸ ︷︷ ︸
outside the mask

,

(8)

where Oin = {ou}, i.e., only using the user-chosen
view. Although it is possible to consider the color
guidance from more sampled views (i.e., add more
views in Oin), it will introduce view inconsistency as
will be discussed in our ablation study. lcolor(o,Θ, M)
measures the color difference between the rendered
image F image

Θ (o) and the guiding color image IG
o from

view o with respect to the mask M:

lcolor(o,Θ, M) = (F image
Θ (o) − IG

o )2 ⊙ M. (9)

The first part of Equation 8 measures the recon-
structed quality inside the masks and the second part
measures the reconstructed quality outside the masks.

Depth-guiding loss While we can obtain visually plau-
sible inpainting results only using the color-guiding
loss, it often generates incorrect depth, which might
cause incorrect geometry and keep some unwanted
regions in the scene. To fix these incorrect geometries,
we introduce a depth-guiding loss, which is defined as:

Ldepth(Θ) =
∑
o∈O

(F depth
Θ (o) − DG

o )2, (10)

where DG
o is the guiding depth image from sampled

view o.

Experiments and evaluations
In this section, we show qualitative results on LLFF [12]
and our own datasets, followed by ablation studies.

Implementation details
In this paper, we use the same architecture as the
original NeRF [1] as the backend, and implement our
framework in PyTorch and Python 3.9. Our framework
is tested on a machine with an Intel Core i7-7800X
CPU and an NVIDIA GeForce GTX-1080Ti GPU to
train our models. For each scene, we first train a NeRF

using random parameters and optimize it for 200, 000
steps with a batch size of 4, 096 using Adam [21],
which takes about 18 to 20 hours. The sample points
used in the fine and coarse models are 128 and
64, respectively. To inpaint each scene, we optimize
Equation 7 for 50, 000 steps which take about five
hours.

Evaluation
Datasets To verify the performance of our framework,
we create a customized dataset that contains three
scenes: figyua, desuku, and terebi. The purpose is
to obtain the ground truth of the NeRF inpainting task.
For each customized scene, we collect a pair of photo
sets, i.e., (original and removed). For original set, we
keep all objects in the scene and take photos from 24
camera positions. For removed set, we remove one
object in the scene manually and take photos from
another 24 camera positions. Although it is ideal for
taking images from exactly the same camera positions,
we found it very challenging to achieve in real-world
scenes. To address this issue, we performed an addi-
tional alignment process using iNeRF [22] between the
original and removed sets. Noted that although the
concurrent NeRF inpainting works [10], [11] introduced
datasets that serve the similar purpose, the datasets
are not released publicly. Thus, we will use our own
dataset to evaluate our method qualitatively and quan-
titatively.

Experiment setup As this is the first work focus on
free-form inpainting on NeRF, we propose two baseline
methods for comparisons:
baseline1: per-view color updating. We update the
pretrained NeRF model FΘ with all guiding images IG

by optimizing

Θ̃ := arg min
Θ

∑
IG
s ∈IG

(F image
Θ (os) − IG

s )2. (11)

baseline2: masked mse retraining. We re-train a new
NeRF using all guiding images IG by optimizing:

Θ̃ := arg min
Θ

∑
IG
s ∈IG

(F image
Θ (os) − IG

s )2 ⊙ Ms. (12)

Both baseline1 and baseline2 did not consider depth
information during updating the pretrained NeRF
model or re-train a new NeRF.

We compared the inpainting results of our frame-
work to those of the two baseline methods on the
LLFF dataset and our customized dataset. For the
LLFF dataset, because there is no ground truth of the
inpainted results, we perform qualitative evaluation by
applying the three methods on each pretrained NeRF.
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FIGURE 3: Qualitative comparison - LLFF dataset. For each scene, we show the user-chosen view image and
the user-drawn mask on the left. We then show the color image and depth image generated by different methods:
our method (ours), baseline1 (b1), and baseline2 (b2). The depth map of b1 still keeps the depth of the unwanted
object. Meanwhile, the color of b2 might cause noise or shadow on the scene (shown in horns). Our method,
compared to these two baselines, have better color and correct geometry on final results.

Meanwhile, we evaluate the multi-view consistency of
the inpainted NeRF using the semantic consistency
loss. More specifically, we randomly render 100 views
of a NeRF (FΘ) and compute the following average nor-
malized distance as our multi-view consistency metric:

Dmvc(FΘ) =
1
N

∑
p,q

(∥η(Ip) − η(Iq)∥2
2), (13)

where Ip, Iq is an image pair from two different views
p, q and η is a Vision Transformer (ViT) feature extrac-
tor.

For our customized dataset, we also perform quali-
tative and the multi-view consistency evaluation. More-
over, we obtained the ground truth inpainted results
using the following registration process; thus, we fur-
ther perform quantitative evaluations. For a scene A in
our customized dataset, we first trained a NeRF model
F A using the original dataset. For each image in the
removed dataset, we obtained its camera position
in the coordinate system of F A. After performing our
optimization, we compare the rendered results from the
obtained camera position and its corresponding image
in the removed dataset.

Results and discussions LLFF dataset We show the
qualitative comparison between our method and the
two baseline methods using the LLFF dataset in Fig-
ure 3 and Figure 5. In Figure 3, we observed that
the depth maps of the inpainted NeRF generated by
baseline1 did not match the inpainted image content.
In Figure 5, we showed that there are obvious visual
inconsistencies between different views in the results
generated by baseline1. To avoid these visual inconsis-

tency, we choose to provide color guidance using only
the user-chosen view and let the NeRF model main-
tain the view consistency by itself. Baseline2 recovers
visual satisfactory image content without any color
guidance inside the masked region. However, base-
line2 still generates results that loss fine structures
or synthesize some unnatural patches at complicated
regions, which can be observed at Horns and Orchids.
Our method achieved a multi-view consistency score
of 0.143, outperforming baseline1 and baseline2 with
scores of 0.343 and 0.355, respectively.
Customized dataset We show the qualitative com-
parison between our method and the two baseline
methods using our customized dataset in Figure 1 and
Figure 4. In Figure 4, we can observe that although
baseline1 can synthesize color content closer to the
ground truth, it still fails to generate correct depth map.
On the other hand, baseline2 recovers the content in
the masked region guided by the content from different
views but still creates noisy and blurry result. Our
framework generates closer color and depth images
to the ground truth compared to the two baseline
methods. Quantitatively, we evaluate the quality of
the color image content inside the masked region of
each inpainted color image using PSNR and LPIPS.
For each metric, we compute the average over all
images in the captured sequence of a scene, and then
average the metric over all scenes. We also compute
the L1 distance between the inpainted and the ground
truth depth images inside the mask. In Table 1, we
showed that our proposed method is superior to the
two baseline methods.
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FIGURE 4: Qualitative comparison - customized dataset. For each customized scene, we demonstrate the
ground truth, results generated by our framework, baseline1 (b1), and baseline2 (b2). Our framework generates
more accurate depth maps and synthesizes more fine structures compared to baseline1. Compared to baseline2,
our framework synthesizes more realistic and shape results.
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FIGURE 5: Qualitative comparison - visual con-
sistency. The rendered views generated by baseline1
have severe visual inconsistency across different views
(within the red box region). Meanwhile, our method
synthesize visual consistent results across different
views.

PSNR↑ LPIPS↓ L1↓ MVC↓

Our 28.42 0.081 0.165 0.113
Baseline1 26.55 0.088 0.202 0.245
Baseline2 25.73 0.094 0.217 0.268

TABLE 1: We validate our framework by comparing to
the baseline methods.

Ablation study
How important is the depth-guiding loss? Introducing
the depth-guiding loss (Ldepth) is one of the major
contributions of our framework. We validate its effec-
tiveness by comparing with the optimization results
using color-guiding loss (Lcolor) only, depth-guiding loss
(Ldepth) only, and both losses.

The results are shown in Figure 6. We observed
that optimizing using Ldepth only already leads to cor-
rect geometries inside the masked region but intro-
duces color noises outside. Our method optimizes both
losses and generates correct geometries without color
noises. In Figure 7, we can also observed that the
unwanted object in the region with high depth varia-
tions can be removed by using Ldepth only (red box).
However, using Ldepth only loses color information in
the flat region (blue box). Our method combines these
two losses and remove the unwanted object without
losing color information in the flat region.

How important is color-guiding within the masked re-
gions from sampled views? In our original color-
guiding loss formulation in Equation 8, we only con-
sider the color-guiding within the masked region on the

user-chosen view (i.e., Oin = {ou}). Here, we validate
this design choice by adjusting the number of views we
consider the color-guidings within the masked region
during the optimization.

We compared the results of following three settings:

1) only user-chosen view is used to guide the color
inside the masked region, i.e., Oin = {ou};

2) three sampled views are used to guide the color
inside the masked region, i.e., Oin = {oi , oj , ok}
where i , j , k are randomly sampled;

3) all sampled views are used to guide the color
inside the masked region, i.e., Oin = O.

As shown in Figure 8, we observed that more visual
inconsistency will be introduced when we use more
inpainted images as color guidance. Our framework
obtains stable results for most of the scene using user-
chosen view only; thus, we choose to not to con-
sider other inpainted regions during the computation
of Equation 8.

Limitations and future work
More robust guidances and masks. Our framework
generates initial guiding materials using existing meth-
ods, so also shares their limitations. For example, our
framework fails to inpaint the image region with high
reflectance content (Figure 9) or with a thin structure. It
is possible to design a fusion method to fuse color and
depth guidances from multiple methods to overcome
individual limitations. Meanwhile, we used fixed masks
and guiding materials during the optimization. This is
sub-optimal when the unwanted object is occluded
in some views. We plan to extend our framework to
update the masks in every optimization step.
Volume feature for mask transferring. Our current
framework uses the existing video-based object seg-
mentation method to transfer the user-drawn mask. It
is possible to perform mask transferring by conducting
3D volume segmentation using the volume feature
extracted from the pretrained NeRF.

Conclusion
In this paper, we propose the first framework that
enables users to remove unwanted objects or retouch
undesired regions in a 3D scene represented by a
pretrained NeRF without accessing its training im-
ages. Moreover, our framework requires no additional
category-specific data and training. Instead, we formu-
lated a novel optimization to inpaint a pretrained NeRF
with the generated RGB-D guidances which is agnostic
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FIGURE 6: Depth-guiding ablation result. We show the optimization results using different guiding losses. We
observed that the geometry of the unwanted object could not be removed using the color-guiding term only
(depth inside the blue box). On the other hand, using the depth-guiding term only helps to get correct geometry
but introduces color noises outside the masked region (red box and yellow box). Our method combines both terms
to generate correct geometry (blue box) without introducing any color noises (red box and yellow box).

FIGURE 7: Depth-guiding losses discussion. The unwanted object in the region with high depth variations can
be removed by using the depth-guiding loss (red box). However, using the depth-guiding loss only loses color
information in the flat region (blue box). Combining both losses removes the unwanted object without losing any
color information.

FIGURE 8: Color-guiding ablation result. The visual
inconsistency becomes larger in the masked regions
(red box) when the number of color guidances within
the masked regions increased during optimization.

to the NeRF architectures. We demonstrated that our
framework handles a variety of scenes well, and also

FIGURE 9: Our framework fails to inpaint the mask
region in the left region (red box) and introduces
artifacts in the optimized results.

validate our framework using a customized dataset
where the unpainted ground truth are available. We
believe our framework takes the first step toward the
pretrained NeRF editings and there are many frutiful
editing applications to be explored.
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