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Figure 1: Overview of LayerPack. In this approach, multiple layers are packed into a single image, referred to as a LayerPack
Image. The diffusion-based inbetweening model takes two LayerPack Images corresponding to the start and end frames,
each containing all layers along with the composited image. The inbetweening model then performs the inbetweening task to
generate multiple intermediate frames. Finally, the output LayerPack Images are unpacked into individual layers, resulting in a
layer-separated video.

Abstract

In 2D hand-drawn animation, inbetweening, the
process of generating intermediate frames between
keyframes, requires tremendous manual effort. Recently,
diffusion models have been explored for this task and
have shown promising results. To apply these models to
a professional animation production pipeline, it is nec-
essary to consider support for layered data optimized
for alpha-blending-based compositing. The inbetweening
results for each layer must remain synchronized when
composited, but applying diffusion models to each layer
independently leads to a lack of cross-layer consistency.
To address these issues, we propose LayerPack, a method
for achieving cross-layer consistency in anime inbetween-
ing using a pre-trained model. LayerPack achieves this

through a simple yet effective strategy: packing multi-
ple layers into a single input image. Both qualitative
and quantitative evaluations demonstrate that Layer-
Pack produces higher-quality and better-synchronized
results than per-layer generation approaches.

Keywords: Animation inbetweening, Diffusion model,
Layer generation

1. Introduction

Recently, diffusion models targeting image-conditioned
video generation have been actively studied, showing impres-
sive results [23, 19, 13, 6]. Inbetweening, one of the tasks in
generating videos from images, is to interpolate the motion
between two keyframes smoothly. Inbetweening is strongly
associated with 2D hand-drawn animation production. Inbe-

1

http://attic.ma-roo.com/


©IIS-P / "Ponnomichi" 
Production Committee

Figure 2: Separated layers which are commonly produced in
2D hand-drawn animation.

tweening work requires a significant amount of manual labor.
Therefore, to consider an application in production, research
that focuses on animation datasets for model training [10, 15]
and research about animation-targeted inbetweening mod-
els [4, 16] is being conducted.

One major challenge when considering the application to
production is the existence of layers. Production frequently
utilizes layered data, as shown in Figure 2. By compositing
these layers with alpha blending, the richness of expres-
sion in animation can be significantly expanded. Further-
more, it facilitates the explicit representation of foreground-
background order and object structures, making it highly
compatible with editing workflows. Consequently, layer
data is treated as independent images, and inbetweening is
performed independently for each layer. The inbetweening
results for each layer must not only smoothly connect the
start and end frames but also remain spatially synchronized
when composited with other layers.

However, performing the inbetweening task with diffu-
sion models while preserving the layer separation is techni-
cally challenging for the following reasons.

• Handling the transparency dimension (alpha channel) is
inherently difficult. The appropriate method for repre-
senting layers (e.g, alpha channel, mask image) is still
under investigation [2, 9, 3].

• Animation datasets containing multi-layer structures
are unavailable. One exception is the dataset proposed
in [18], but unfortunately, it is different from the data
used in professional animation workflows.

• The number of layers varies depending on the scene.
Designing and training diffusion-based models that han-
dle varying numbers of layers is highly challenging.

• Modeling the cross-relationships between layers is dif-
ficult. One of the most straightforward approaches is
to apply inbetweening diffusion models to each layer
independently; however, the generated motions across

layers become inconsistent both spatially and tempo-
rally. (See the baseline case in Section 5.2.4 and Sec-
tion 5.2.5)

To address these issues, we propose LayerPack, a method
that enables existing pretrained diffusion models to perform
multi-layer inbetweening that ensures synchronized motion
across layers (Figure 1). To achieve this, LayerPack simply
packs multiple-layer content into a grid and sends it to a
standard diffusion inbetweening model. This image pack-
ing approach allows layers to be represented without using
transparency channels because each layer is spatially inde-
pendent within the image. Furthermore, as other packing
systems [21] demonstrate, information propagates between
each grid cell, achieving cross-layer consistency. This ap-
proach does not require any additional training or fine-tuning
of the diffusion model, facilitating the adoption of existing
models.

We evaluated our method using a real-world anime dataset
provided by a professional animation studio. Through both
qualitative and quantitative evaluations, we demonstrate that
LayerPack produces higher-quality results than the baseline
approach of generating each layer’s video independently in
real-world settings. We also demonstrated that LayerPack’s
method works not only with specific generation models but
also with a variety of generative models.

Our contributions are as follows.

• We propose LayerPack, a packing method that enables
existing video inbetweening models to handle layer-
structured data without additional training.

• We demonstrate that the proposed method achieves bet-
ter cross-layer consistency in both temporal and spatial
domains than existing approaches.

2. Related Work

2.1. Image-to-Video Generation

Video generation models have been extensively stud-
ied. In Image-to-Video generation, existing methods are
broadly classified into two categories: extrapolation from
a single-image condition and inbetweening between two
given keyframes. These approaches have advanced through
frameworks such as generative adversarial networks [1], au-
toencoders [5], and more recently, diffusion models utilizing
U-Net or Transformer architectures [17, 12, 7].

In particular, the rise of diffusion transformers has signifi-
cantly improved temporal coherence and visual quality. For
example, CogVideoX adopts a 3D variational autoencoder
and expert transformer for long-duration, high-resolution
video generation [19]. Open-Sora [23], HunyuanVideo [6],
and Wan [13] further expand the accessibility and scala-
bility of video generation, enabling efficient text-to-video



and image-to-video synthesis. Additionally, FramePack pro-
poses a context-packing strategy for efficient long-sequence
generation [21].

While most of these models are trained on real-world
video data, their direct application to 2D hand-drawn anima-
tion is not always appropriate. Several studies have devel-
oped specialized models and datasets for animation, such as
ATD-12K [10] for animation interpolation and AVC [15] for
super-resolution. Methods like ToonCrafter [16] leverage
diffusion priors to animate keyframe-based cartoon images,
while AniSora [4] presents an integrated framework for con-
trollable animation generation and evaluation.

2.2. Layered dataset

Dataset containing layer information is extremely scarce.
DAVIS datasets [8] was created as a benchmark for video
segmentation and contains information closely resembling
a layered structure, but 2D animation data is not included.
MULAN [11] is a dataset that decomposes images into layers
and performs instance completion to reconstruct occluded
areas, but each data is a single image, not a video sequence.

LayerAnimate [18] attempted to create a layered dataset
of 2D animation, but unfortunately, it is different from the
data used in professional animation workflows. Holding
different objects on the same layer and assigning only a one-
hot layer ID to each pixel prevents the full benefits of the
layer structure from being exploited. The issue of animation
layered datasets in research remains unresolved.

2.3. Layer-Wise and Transparency-Aware Generation

Layered representations play an important role in both
design and animation, allowing flexible composition and
fine-grained control. However, the explicit modeling of
transparency and multiple layers remains a challenging topic.
LayerDiffuse [20] and Alfie [9] address RGBA image gener-
ation by enabling transparent-layer synthesis directly from
pretrained diffusion models. At the video level, TransPix-
eler [14] extends diffusion transformers for consistent RGBA
video generation through LoRA-based fine-tuning. Lay-
erDiff [2] introduces a text-guided image diffusion frame-
work for composable, multi-layered image synthesis using
inter- and intra-layer attention. LayerFlow [3] extends this
concept to video by generating per-layer sub-clips with layer
embeddings and staged training, but they mentioned that
generating a variable number of layers is their limitation.
In the animation domain, LayerAnimate [18] is designed to
control each layer with different magnitudes of motion or dif-
ferent user-input guidance, but it fails to maintain cross-layer
consistency.

Large diffusion-transformer models have dramatically
advanced video generation, and recent works have begun ex-
ploring RGBA and layer-aware synthesis. However, existing
approaches rarely address multi-layer animation inbetween-

ing with explicit cross-layer consistency, which is the focus
of this study.

3. Background: Layers in Professional Anima-
tion Production

In the production of 2D hand-drawn animation, the lay-
ered data has been a common practice. This section discusses
the purposes of layer separation in animation production and
outlines the major challenges in research that focuses on
layer-based representations.

3.1. Purpose of Layer Separation

A layer refers to a structural representation in which a
single frame is decomposed into multiple objects or parts
(Figure 2). Each layer is individually drawn and subse-
quently composited in a predefined order to construct the
final scene. The use of layers in animation production serves
multiple purposes.

One primary purpose of layer separation is to enhance
the visual richness of the final composited frame. Each layer
is typically represented in the RGBA format, enabling the
depiction of transparent objects. For instance, as illustrated
in the Figure 2, the transparent portion of a vinyl umbrella
can be drawn on a separate layer; by adjusting its opacity
and overlaying it on other layers, complex visual effects can
be easily achieved.

Another advantage of layer separation lies in its abil-
ity to represent the structure of occluded objects explicitly.
When layers are organized according to semantically mean-
ingful units, such as individual characters, the connectiv-
ity and internal structure of objects within each character
become clearer. Moreover, this approach allows for the
explicit definition of spatial relationships, including fore-
ground–background order.

From a production perspective, the use of layers also
contributes to the reduction of labor. Static elements, for
example, need not be redrawn in every frame. By separat-
ing static and dynamic components across layers, redundant
drawing tasks can be minimized, thereby improving overall
production efficiency. Even using diffusion models for gen-
eration, layers provide significant flexibility when checking
and editing generated results. So it is highly valuable to
generate each layer individually.

3.2. Challenges in Layer-Oriented Research

Despite its practical importance, research focusing on
layer-based representations in 2D animation faces several
challenges.

First, datasets containing multi-layered data are extremely
limited. While some datasets, such as MULAN [11], decom-
pose single photorealistic images into multiple layers, and
others provide ground-truth foreground–background masks
for video matting tasks, there currently exist no publicly



available datasets of multi-layered 2D hand-drawn anima-
tion. LayerAnimate [18] has proposed a Layer Curation
Pipeline for constructing such a multi-layered 2D hand-
drawn animation dataset; however, several issues remain.
(1) The segmentation model employed was trained primarily
on real-world images, which limits the accuracy of layer
separation when applied to anime-style imagery. (2) The
proposed approach focuses mainly on motion vectors, thus
failing to capture the semantic and structural advantages of
meaningful layer decomposition discussed above.

Second, the treatment of transparency poses a signifi-
cant challenge. Most image and video diffusion models are
trained on RGB data without an alpha channel, making it dif-
ficult to generate RGBA images or videos directly. Existing
research on RGBA video generation [20, 9, 14] primarily
targets text-to-video synthesis or video matting tasks, rather
than hand-drawn animation.

Finally, the number of layers should ideally be variable,
depending on the number and type of objects present within
a scene. Furthermore, layers are not necessarily independent;
cross-layer continuity and interactions across multiple layers
must be modeled to represent complex motion and spatial
relationships accurately.

4. Method: LayerPack

LayerPack is a method for generating multi-layer inbe-
tweening with cross-layer consistency utilizing pretrained in-
betweening models without additional training or finetuning.
Section 4.1 describes the problem definition, and Section 4.2
describes our novel layer-wise frame representation.

4.1. Problem Definition

We target the layer-wise inbetweening task. The input
consists of a start frame and an end frame, both separated
into layers. We aim to generate the intermediate frames for
each layer and composite them to create the inbetweening
frames. Let the total number of animation frames be T + 1
and the number of layers be L, where the frame index is
t ∈ {0, 1, 2, . . . , T}. The layer index l is ordered such that
the smaller values correspond to the background and the
larger values to the foreground.

The image of layer l in frame t is denoted as

X
(l)
t ∈ R3×H×W . (1)

The input consists of all layer images for the keyframes t = 0
and t = T , i.e.,

{X(l)
t | t ∈ {0, T}, l ∈ {0, 1, . . . , L− 1}}. (2)

The output is the set of all layer images for all frames:

{X(l)
t | t ∈ {0, 1, . . . , T}, l ∈ {0, 1, . . . , L− 1}}. (3)
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Figure 3: The composited image and individual layer images
are packed into a single image. For example, for a sequence
with three layers, the four images (three layers and one
composited image) are arranged in a 2× 2 grid.

For compositing, alpha-blending is applied in the ascending
order of the layer indices. That is,

Yt = C(X
(0)
t , . . . , X

(L−1)
t ), (4)

where C represents the alpha compositing operation.

4.2. Layer-Wise Frame Representation

In the proposed method, LayerPack, we pack the input
and output images into a grid. We pack multiple layers into
a single image for the following reasons:

• It enables the representation of layer data as standard
RGB images without requiring alpha channels.

• Because the packed image can be processed as a single
image, existing inbetweening models can be directly
applied without architectural modification.

The packed image is referred to as a LayerPack Image
(Figure 3) and is defined as follows.

The LayerPack Image Pt for frame t is constructed by
spatially concatenating all layer images for frame t along
with the composited image obtained by their alpha blending.
That is, Pt contains the L layer images

{X(l)
t | l ∈ {0, 1, . . . , L− 1}} (5)

and the composited image Yt, resulting in a total of L + 1
images. These images are arranged on a grid of K rows
and K ′ columns (K ′ = K or K + 1). Each cell in the grid
contains an image of size (H,W ), so the entire LayerPack
Image Pt forms a single image of size (K ×H, K ′ ×W ).

4.3. Inbetweening with LayerPack

By using the LayerPack Images at the keyframes, P0 and
PT , as inputs to an inbetweening model, we can generate a
set of LayerPack Images at the intermediate frames, {Pt}Tt=0

(Figure 1). For this, since our method is model-agnostic, we
can use existing pre-trained inbetweening models, such as
FramePack [21], FCVG [24], ToonCrafter [16], and AniSora
[4], as the backbone without additional training.
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Figure 4: Comparison between packing patterns. Various
packing patterns for the preliminary experiment to verify the
effectiveness of the packing strategy.

Table 1: Quadrant synchronization evaluation results (mean
± std over n = 30 samples). Higher PSNR and lower LPIPS
indicate stronger synchronization (more similar outputs).

Pattern Pair PSNR ↑ LPIPS ↓

vertical tl–bl 37.91± 2.05 0.0226± 0.0070

horizontal tl–tr 37.95± 1.70 0.0223± 0.0086

cross tl–br 35.73± 1.95 0.0311± 0.0094

single

tl–tr 28.94± 3.16 0.0530± 0.0213
tl–bl 29.83± 3.47 0.0468± 0.0223
tl–br 29.20± 2.80 0.0545± 0.0225
tr–bl 29.07± 3.05 0.0548± 0.0233
tr–br 29.09± 3.22 0.0517± 0.0227
bl–br 29.71± 3.21 0.0517± 0.0235

4.4. Post-processing

After obtaining the generated results, we conduct post-
processing. Post-processing has three stages. First, we split
the generated video based on the grid used during packing
and treat each segment as a generated video for each layer.

Second, most diffusion-based inbetweening models are
trained with a fixed resolution. Since our proposed method
packs multiple images into a single image, resizing it to
fit the input resolution of the inbetweening model reduces
the resolution of each individual layer, resulting in lower-
resolution outputs than the original keyframes. So we apply
super-resolution, restoring each layer to its original resolu-
tion.

Finally, we perform alpha blending to obtain the com-
posite video. Since the output image is RGB, we perform
luminance-key-based matting to mask the white areas that
are to be treated as the background.

5. Experiments and Results

5.1. Evaluation on Packing Effectiveness

Packing patterns. As shown in Figure 4, we evaluate
seven packing patterns using a four-quadrant layout: Top-
Left (TL), Top-Right (TR), Bottom-Left (BL), and Bottom-
Right (BR). The patterns differ in how the same input image

Figure 5: Comparison between packed and single-layer gen-
eration methods. PSNR and LPIPS distributions across all
test cases are shown.

Composited frame Layer 0 Layer 1 Layer 2
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Figure 6: Examples within the evaluation dataset. Consists
of animation data with two or three layers.

Table 2: Quantitative comparison. We conducted a quantita-
tive evaluation on ten different scenes. Our method signifi-
cantly outperforms baseline methods.

method PSNR (↑) LPIPS (↓)

LayerPack (Ours) 20.63 0.174
Baseline (Layer-by-Layer) 12.40 0.245

is placed across quadrants. In the Vertical pattern, the image
is placed in the left two quadrants (TL and BL). In Horizon-
tal, it is placed in the top two quadrants (TL and TR), while
in Cross, it is placed in diagonal quadrants (TL and BR).
In the Single pattern, the image is placed in only one quad-
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Figure 7: Qualitative Comparison 1. Comparison between the ground truth, the proposed method, and the layer-by-layer
baseline. In the regions highlighted by boxes, our method produces synchronized layers, whereas the layer-by-layer baseline
does not. Furthermore, our result is more similar to the ground truth frame.

rant, resulting in four variants depending on the occupied
quadrant (TL, TR, BL, or BR).

Video Generation Settings. We use FramePack [21] as
the backbone model to generate video inbetweening results
conditioned on two keyframes. Experiments are conducted
on six different scenes, and for each scene and packing
pattern, we generate results using five different random seeds
to account for stochastic variation.

Evaluation Settings. For each generated RGB frame Pt ∈
R3×H×W , we partition the image into four quadrants and
evaluate video synchronization between regions that contain

identical input content. For the Vertical, Horizontal, and
Cross patterns, we compare the corresponding non-blank
quadrant pairs within the same video. For the Single patterns,
we compare non-blank quadrants across different videos
to assess whether consistent motion is generated regard-
less of the quadrant location. We use Peak Signal-to-Noise
Ratio (PSNR), Learned Perceptual Image Patch Similarity
(LPIPS) [22] as evaluation metrics.

Results. Quantitative results are summarized in Table 1,
and the distributions of PSNR and LPIPS across all test
cases are shown in Figure 5. Statistical significance is evalu-
ated using one-way ANOVA followed by Tukey’s Honestly
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Figure 8: Qualitative Comparison 2. Comparison between the ground truth, the proposed method, and the layer-by-layer
baseline. In the regions highlighted by boxes, our method produces synchronized layers, whereas the layer-by-layer baseline
does not. Furthermore, our result is more similar to the ground truth frame.

Significant Difference (HSD) test.

ANOVA revealed a significant effect of the packing pat-
tern on PSNR (F = 112.35, p < 0.001). Two-quadrant
packing patterns (Vertical and Horizontal) achieved the
highest PSNR, significantly outperforming all Single pat-
terns (p < 0.05), with no significant difference between
Vertical and Horizontal.

For LPIPS, ANOVA also showed a significant main effect
(F = 25.08, p < 0.001). Two-quadrant packing patterns
(Vertical, Horizontal, and Cross) achieved significantly
lower LPIPS scores than Single patterns (p < 0.01), indicat-
ing stronger perceptual synchronization.

5.2. Evaluation on LayerPack

5.2.1 Evaluation Dataset

We evaluated our method using one-second anime-style
videos where artists manually separated the foreground ob-
ject into two or three layers. This data was provided with
permission from a professional animation studio. From this
real-world data, we prepared 40 different scenes where lay-
ers were effectively used. An example of the data is shown
in Figure 6. This dataset contains a significant amount of
data that overlaps with other layers, as well as data that
shares shapes or boundaries with other layers.
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Figure 9: Validation test to demonstrate LayerPack’s model-agnostic property. We demonstrate that the LayerPack approach is
applicable to many inbetweening models in recent research.

Note that existing datasets could not be used in our evalua-
tion. Most existing animation datasets lack layer information
[10, 15] or lack images in a continuous sequence with lay-
ers [11]. The datasets used in LayerAnimate [18] were not
publicly available.

5.2.2 Implementation

We evaluated our LayerPack method primarily using the pre-
trained model of FramePack1 [21]. We chose FramePack
as our backbone since it is one of the state-of-the-art inbe-
tweening models and performs well for 2D animation data
without additional fine-tuning with an animation dataset.

In our experiments, we apply bilinear super-resolution to
the generated videos to restore them to the same resolution
as the baseline method for a fair comparison.

1Note that our method, LayerPack, should not be confused with
FramePack. Although the names are similar, the packing strategy and
the underlying objectives are entirely different. The two methods are or-
thogonal and can be used together within the same pipeline.

5.2.3 Comparison

We construct a baseline by generating each layer sequence
independently. Given the layer-separated keyframes

{(X(l)
0 , X

(l)
T ) | l ∈ {0, 1, . . . , L− 1}}, (6)

we run the same pretrained inbetweening model M L times,
once for each layer:

X̂
(l)
0:T = M

(
X

(l)
0 , X

(l)
T ; s

)
, l ∈ {0, 1, . . . , L− 1}, (7)

where s denotes the random seed. For a fair comparison and
to reduce stochastic variation, we use the same seed s (i.e.,
the same initial noise) for all L inference runs.

Similarly to the proposed method, we apply lumminance-
key based matting to obtain alpha channels for each layer
andthen composite the generated layers in the predefined
order to obtain the final inbetween frames:

Ŷt = C
(
X̂

(0)
t , . . . , X̂

(L−1)
t

)
, t ∈ {0, 1, . . . , T}. (8)

We also use FramePack [21] as the backbone model for
this baseline method. This is because the comparison fo-
cuses not on differences in backbone architecture, but on the



distinction between independent layer-wise generation and
joint generation with LayerPack.

We have not compared LayerAnimate [18], which han-
dles layer-wise inbetweening. The objective of this research
is to maintain cross-layer consistency, an issue LayerAni-
mate does not address. Furthermore, LayerAnimate cannot
handle data where multiple layers overlap, therefore, it can-
not utilize the evaluation dataset.

5.2.4 Quantitative Evaluation

For quantitative evaluation, we used Peak Signal-to-Noise
Ratio (PSNR) and Learned Perceptual Image Patch Similar-
ity (LPIPS) [22] as metrics for the generated results. These
metrics are not intended to measure cross-layer consistency.
To our knowledge, no metrics exist for evaluating cross-
layer consistency, so we applied these metrics based on the
following hypothesis: when the videos in each layer are syn-
chronized temporally and spatially, the synthesized frames
will have fewer unnatural parts and artifacts and exhibit
higher perceptual fidelity. The lack of evaluation metrics is
addressed in more detail in Section 6.

Our proposed method achieved scores better than both the
baseline method, which composites outputs generated layer
by layer, and the method that uses composite keyframes as
input (Table 2) .

5.2.5 Qualitative Evaluation

The results of the qualitative evaluation are shown in Figure 7
and Figure 8. As highlighted in the boxes in these figures, the
proposed method produces synchronized motion between
independently generated layers, especially around object
boundaries. Consistency was achieved in both temporal and
spatial terms (see the supplementary video).

5.3. Validation of Model-Agnostic Property

We conducted additional experiments to validate Layer-
Pack’s model-agnostic property. For this purpose, we applied
LayerPack to FramePack [21], FCVG [24], ToonCrafter [16],
and AniSora [4]. We did not perform any additional training,
as in other experiments. Figure 9 shows the results. For all
methods, the composite results in the top row show spatial
consistency, and there is no misalignment between the cup
and its contents, as seen with the baseline method in the
bottom of Figure 7.

6. Discussion

Failure cases One limitation of our method is that it may
result in failures when objects move beyond the grid cell
boundaries (Figure 10). In the first frame, the character is
cropped off at both the top and bottom, and the two vertically
stacked layers connect unnaturally, resulting in an unclear
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Figure 10: Failure case. The blue frame indicates the implicit
boundary between layers, but in the generated intermediate
frames, the object crosses this boundary (red frame).
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Figure 11: An example of edge-based cross-layer consis-
tency evaluation. Detect boundaries and evaluate whether
elements shared across multiple layers (green) are consistent.

boundary. This issue arises because the packing process
divides the image into fixed grid cells, but the information
about the boundaries between layers is not explicitly pro-
vided to the generative model. Consequently, when an object
drawn near the boundary moves across it, the model may
fail to maintain grid cell boundaries, leading to artifacts or
unnatural transitions.

Evaluation metrics In this study, we conducted quantita-
tive evaluations using PSNR and LPIPS metrics to assess
cross-layer consistency. However, these metrics are intended
to evaluate pairwise frame similarity and do not directly
measure cross-layer consistency.

However, designing such metrics is difficult because
cross-layer consistency involves complex relationships
across multiple layers. These relationships include, but are
not limited to, object interactions or tracking, overlay ef-
fects, temporal coherence, and structural connectivity across
layers.

One possible direction is to define spatial consistency
in terms of trackable correspondences across layers, such
as points, edges, or regions. For example, a metric could
be designed to evaluate consistency based on the hypothe-
sis that edges appearing at similar spatial locations across
multiple layers can be regarded as candidates for bound-
aries that should be shared among layers.(Figure 11) This
evaluation does not assume that all edges should be shared
between layers; it is performed only on the specific edges
that should be shared. For temporal consistency evaluation,
we attempted to design a metric based on optical-flow-based
warping. However, most 2D hand-drawn animations are



largely produced using flood-fill-style coloring, resulting
in large, flat-color regions with very limited texture or lu-
minance variation, making the metric unstable for tracking
temporal motion.

An important future work will be to explore the above
methods further and consider ways to more directly assess
consistency across layers.

Benchmark dataset limitations In this study, we used a
real-world animation dataset from a professional animation
studio. This dataset is valuable as it reflects actual produc-
tion workflows, but it is not publicly available, so other
researchers cannot replicate the evaluation under the same
conditions.

In the field of animation, the absence of a common dataset
is not only a problem of insufficient training data but also a
barrier to fair comparison among different methods. To ad-
vance research in this area, it is crucial to establish publicly
available datasets that accurately represent real-world pro-
duction scenarios. Such datasets would enable researchers
to benchmark their methods effectively and encourage inno-
vation in layer-aware animation generation techniques.

Resolution limitation due to packing Our proposed
method can handle varying numbers of layers. This is very
useful in real-world applications where the number of layers
varies by scene, and some scenes may have more than 10
layers.

However, because the generative model’s output reso-
lution remains constant, increasing the number of layers
decreases the resolution of each grid cell.

FramePack [21] only supports 480p and AniSora [4] sup-
ports 480p and 720p. Therefore, the resolution of each grid
cell is limited by the generative model’s output resolution.
For example, when using FramePack with 480p output res-
olution, if there are four layers, each grid cell can have a
maximum resolution of 240p (2x2 grid). If there are nine
layers, each grid cell can have a maximum resolution of
160p (3x3 grid). This limitation may lead to lower-quality
outputs, especially when the number of layers is large. Super-
resolution can help mitigate this issue, but it may not fully
recover the lost details.

Investigating super-resolution methods specialized to
LayerPack There is room for further investigation into
super-resolution in the future. Our current implementation
utilizes simple bilinear super-resolution; however, we antic-
ipate that a reference-based super-resolution approach that
uses the original resolution’s keyframes as a reference may
yield better results.

7. Conclusion

We proposed LayerPack, a packing method that en-
ables existing video inbetweening models to handle layer-
structured data without additional training or finetuning. Our
results demonstrate that even when a single object is sep-
arated into multiple layers, as is common in data used in
real anime production environments, the generated motion
remains synchronized both temporally and spatially.
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