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ABSTRACT

In deep learning application development, programmers tend to
try different architectures and hyper-parameters until satisfied
with the model performance. Nevertheless, program crashes due
to tensor shape mismatch prohibit programmers, especially novice
programmers, from smoothly going back and forth between neural
network (NN) architecture editing and experimentation. We pro-
pose to leverage live programming techniques in NN architecture
editing with an always-on visualization. When the user edits the
program, the visualization can synchronously display tensor states
and provide a warning message by continuously executing the
program to prevent program crashes during experimentation. We
implement the live visualization and integrate it into an IDE called
ODEN that seamlessly supports the “edit—experiment—edit—---"
repetition. With ODEN, the user can construct the neural network
with the live visualization and transits into experimentation to
instantly train and test the NN architecture. An exploratory user
study is conducted to evaluate the usability, the limitations, and
the potential of live visualization in ODEN.
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1 INTRODUCTION

Deep learning (DL) has attracted considerable attention in many
research areas, such as computer vision and natural language pro-
cessing. Many programmers are enthusiastically testing deep learn-
ing algorithms on their own dataset to obtain new insights, who
do not necessarily have the mathematical and theoretical back-
ground required to understand how machine learning works [7].
In practice, programmers rarely build DL models from scratch and
instead utilize libraries such as Tensorflow [1, 2] and PyTorch [20].
These libraries provide high-level APIs to build a DL model while
retaining the flexibility to customize the DL model in detail. The
learning resources for novice DL programmers (e.g., blog posts
and GitHub repositories) also adopt these libraries in their code
examples. Following these resources, novice DL programmers apply
these libraries in their model development and repeatedly transit
between neural network (NN) architecture editing and experimenta-
tion [21] phases to improve the performance of their DL models by
trial and error.

The transitive development manner results from the experi-
mental nature of the ML application [7]. However, recent stud-
ies show that novice DL programmers often struggle in DL envi-
ronment setup and model implementation issues that abort the
transition [3, 36]. Among these issues, tensor shape mismatch is a
typical reason that causes program crashes [36]. In addition, there
are specific needs for network architecture editing in DL model
development, as shown in Yan’s formative study [33]. For instance,
one of their participants mentions that “based on our data, we may
change our (network) structure and add few more layers behind or
in front of the original network”. This process potentially intro-
duces tensor shape mismatch errors in novice programmers’ DL
programming, which prohibit novice users from the smooth transi-
tion between the NN architecture editing and experimentation and
make the development cumbersome (the details will be described
in section 3).

This paper presents a live NN architecture editor design to help
solve shape mismatch errors in network architecture editing. We in-
troduce live programming techniques into NN architecture editing
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and enable an always-on tensor-semantic visualization alongside a
traditional text-based code editor. We adopt Projection Boxes [17]
in our live programming environment design and adjust the visu-
alization for synchronously displaying tensor shape information
semantics. We provide three view modes for showing tensors in
different dimensions. The editor also supports NN architectures in
a nested form which is common in practice. We implement the live
NN architecture editor in an integrated development environment
called ODEN to show its value in the actual NN architecture editing
and experimentation transition. Unlike other IDEs designed to assist
general-purpose programming [31], ODEN specifically helps the
initial and exploratory DL model development. The programmer
first edits the NN architecture in the live NN architecture editor,
then instantly trains and tests the edited network architecture using
an integrated and sandboxed experimentation panel. We ran an
exploratory user study that involved seven participants in evaluat-
ing the usability, the limitations, and the potential of the live NN
architecture editor. During the user study, the participants were
requested to improve the model performance based on an existing
NN architecture and a dataset. We observed their developing strate-
gies and noticed several actual usage scenarios with ODEN. The
participants, who were all identified as novice DL programmers,
thought the live NN architecture editor helps diagnose and solve
tensor shape mismatch while editing their DL programs.

In summary, we highlight the contributions of this work as be-
low:

(1) A live programming environment for solving tensor shape
mismatch problems. It synchronously analyzes and visual-
izes in-edit neural network programs. The live visualization
can inspect not only linear networks but also nested net-
works with multiple sub-networks.

(2) AnIDE implementation called ODEN that integrates the live
NN architecture editor and a sandboxed experimentation
panel to support the seamless transition between the NN
architecture editing and experimentation.

(3) An exploratory user study to assess the usability, the limi-
tations, and the potential of the live NN architecture editor
and the usage scenarios found during the user study. I

2 RELATED WORK

2.1 Hurdles to access Deep Learning

Recent studies have investigated obstacles that non-expert DL users
face, and their findings inspire us to address these obstacles. Cai
and Guo surveyed 645 software engineers for their desire to learn
machine learning and the hurdles they face during their learning [7].
They found that novice users desire paired conceptual tutorials and
code examples to help improve their understanding of complex and
esoteric ML theories. One response in their survey is, “It was nice
[...] to have the small code demos that you can edit and run right
there. It really helps basic understanding.” Additionally, they also
found that the convenience of modifying an existing model and
the experimental nature in developing an ML application should be
emphasized in a tool to support novices. These findings motivated
us to make a scaffolding tool that is easy enough to run, modify from
a template, and experiment in different model-building processes.
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Zhang et al. [36] analyzed and categorized the DL-related ques-
tions from StackOverflow and indicated that frequent implementa-
tion failures of DL applications and program crashes stop novice
users from quick experimentation. Among the program crashes,
tensor shape mismatch is a typical error type. Compared to other
typical program crash reasons, the tensor shape mismatch error is
more complicated and cannot be addressed with static code checks.
We will discuss this in the next section. Patel et al. identified three
significant obstacles to applying ML as a tool in software devel-
opment, including the difficulty of using ML in an iterative and
exploratory way [22]. Yang et al. found that most non-experts with
programming skills prefer interactive ML tools that take the form
of a code editor compared to expert users because “they can more
easily re-use online scripts and ML solutions” [34].

We designed our tool as an extended code editor to address these
needs: the tool should help reduce the program crashes in the DL
application development; it should support importing existing code
templates into its interface, then allow the user to modify and check
the model program interactively; it should consist of mechanisms
to shorten the test and debugging cycle of DL programs; the usage
scenario of it should consider the exploratory and experimental
nature of DL development.

2.2 Deep Neural Network Visualization

Many visualization tools have been proposed to support different
subprocesses during the development of a DL application. Ten-
sorboard [32] is a popular tool to help visualize a running DNN
instance after the in-editor stage and the metrics such as accuracy
and training loss. Kanit et al. also conducted a study among DL
programmers, and found that programmers commonly draw tensor
shape diagrams before implementing. This phenomenon inspires us
to bring in-edit visualization into DL programming. Neural Network
Console [27] works as a visual programming tool for the entire
process of DL application development, including NN architecture
building, training monitoring, and testing. Some other tools aim
at helping interpret a pre-trained model or the general behavior
of a DNN, such as LSTMVis [28] and TensorFlow Playground [26].
Our system differs from these tools because we support on-the-fly
visualization during text-based code editing.

To our knowledge, Skyline [35] is the most closely related to
our work. As an in-editor DNN profiling and visualization tool,
Skyline provides computational performance information such as
memory consumption and throughput during the code editing
phase. It leverages an always-on runtime analyzer to re-profile the
user’s code every time the user alternates the current program. We
also adopt such a live programming environment. Nevertheless,
our system differs from Skyline in three perspectives. First, while
Skyline serves experienced DL programmers, our system mainly
targets beginner DL users. Second, Skyline only assists users in the
NN architecture design process, while our system further allows
users to go forward to experimentation and back to editing. Finally,
Skyline implements computational performance profiling in an
editor to help solve computational performance issues. On the
contrast, our system serves as a scaffold that prevents tensor shape
mismatch errors and enables novice users to experiment with the
edited NN architecture instantly.
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2.3 Live Programming Environment

The research on live programming has a long history, and many
properties and applications have been proposed. Hancock [9] in-
troduces several essential properties of live programming; different
levels of programming liveness have been categorized [29]; many
live programming environments have been implemented in general-
purpose programming [8], data structure programming [18], and
micro-controller device development [14].

Projection Boxes [17] introduces non-intrusive on-the-fly recon-
figurable visualization into general-purpose live programming. It
leverages full-semantic, line-related, and auto-shrink projection
box visualization alongside the traditional code editor to provide
program visualization meanwhile avoiding information overload.
We built our live visualization inspired by Projection Boxes (i.e.,
mode switching, features to prevent information overload, line-
level program semantics) but chose how and what to display that
suits the DL programming process.

3 BACKGROUND

In this section, we briefly introduce the background of DL program-
ming practice.

3.1 The Practice of DL Application
Development Using Libraries

To define a DNN, a programmer needs to write a program that
assembles a series of mathematical functions into a sequence. The
sequence of mathematical functions is called a network, and each
mathematical function is known as a layer in the network, which
may maintain several internal parameters, i.e., weights.

Once the programmer has assembled the network using several
layers, the programmer writes scripts to define the training pro-
cess, where the sequence learns prediction from the given data.
The training program instantiates the DNN into a model, then,
during training, iteratively updates the model weights learning
from batches of input data. In each iteration of the training process,
the model predicts from the input data batch and computes the
error by comparing the model prediction with the ground truth.
The program then optimizes the model weights gradually to de-
crease the prediction error. In this process, layers receive and emit
data in the form of a multi-dimensional array, e.g., for an image
as the input into the network, the array consists four dimensions:

batch size, channel size , height , and width . The multi-
dimensional array is called activation or tensor in the context of DL
programming.

After the training process ends, the programmer evaluates the
trained model performance and iteratively improves it by mutating
hyper-parameters, training data, and network architecture.

3.2 Define-by-Run and Structured Network
Code

Most modern DL libraries such as Chainer [30], PyTorch [20], and

Tensorflow Eager [2] adopt the idea of define-by-run in their API

design. Define-by-run means that the program instantiates layers

as a property of a Module oran object , then directly calls the in-

stance to process tensor. Oppositely, the classic define-and-run idea
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Listing 1: PyTorch define-by-run module snippet example

class Net(nn.Module):

def __init__(self):
super(Net, self).__init__()
self.c = torch.nn.Conv2d(3, 48, kernel_size=11,

< stride=4, padding=2)

self.b = torch.nn.BatchNorm2d(48)
self.a = torch.nn.ReLU()

def forward(self, x):

h = self.c(x)

h = self.b(h)

h = self.a(h)

return h
n = Net()
x = torch.randn(1, 3, 128, 128)
y = n(x)

requires the programmer to prepare a network definition scheme
outside the program, limiting network editing flexibility. If we pick
PyTorch as the tool to program the DNN in a define-by-run manner,
a typical pattern to structurally program a network is defining a

Module class and assigning layers as its properties. The snippet!
may look like:

Note that the whole network and each independent layer both
inherit the class Module , which means that the network can also
be regarded as a layer. This characteristic makes it possible to reuse
small networks to construct a more extensive network with a nested
architecture.

3.3 Common Runtime Errors in DL
Programming

Similar to general-purpose programming, bugs in DL programming

can also be identified as explicit or implicit bugs. Implicit bugs will

not produce errors during program execution, but cause symptoms

like, e.g., abnormal training or low prediction accuracy. Explicit

bugs crash the program and abort the training or evaluation process.

According to Zhang’s research on DL-related questions collected
from StackOverflow [36], the explicit bugs in DL programming can
be categorized into three factors: shape mismatch (inconsistency),
numerical error, and CPU/GPU incompatibility. Such bugs are most
frequently reported in DL application-related questions but hardly
appear in conventional non-DL applications.

In this paper, we address the explicit bugs, a.k.a. runtime errors,
and focus on shape mismatch errors because the shape mismatch
errors often result from the repeated NN architecture mutation,
which is typical in the iteration of DL model development. Moreover,
the shape mismatch error has its particular characteristics, making
it unable to be solved with static code check. The shape mismatch
error is explained as follows.

Layers in a network are defined with several arguments and
can only receive tensors in a specific shape. If the arguments of

1At the last line of Listing 1, n(x) forwards the argument ' x to the other hook
functions and the defined forward function. For simplicity, readers can think ' n(x)

is equivalent to n.forward(x)
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a layer mismatch with the input tensor shape, the execution will
be aborted and the program interpreter throws an error. E.g., in
the image classification task, when a convolution layer receives an
input tensor and produces a tensor with noninteger height or

width , a tensor shape mismatch error will happen. Note that the
tensor shape must be integers.

The acceptable input tensor shape of a layer depends on the layer
type. If we take PyTorch library as an example, nn.Linear(120, 84)
means the linear layer can only receive a 1D tensor of length 120
and transform it into a 1D tensor of length 84. In this case, the
acceptable input tensor shape is unique. Layers such as convolution
and pooling layers will accept a specific pattern of shape rather
than a uniquely defined shape in most cases. To summarize, in
many layers, the input and output shapes are not solely determined
by the layer definition itself but are also influenced by the real-time
input tensor shape. In this sense, checking tensor shape mismatch
becomes cumbersome because the programmer needs to trace the
tensor shapes from the start to the end of a neural network. These
characteristics make the programmer have to judge whether a ten-
sor is acceptable to the current layer and maintain the mental image
during the NN architecture editing. Maintaining the mental model
towards the NN architecture will become extremely difficult as the
network architecture scale becomes larger, especially for novice
programmers. Additionally, these characteristics make the static
code checking approach difficult to cover all layer types.

4 LIVE NEURAL NETWORK ARCHITECTURE
EDITING

Starting from the motivation of preventing program crashes re-
sulting from shape mismatch errors in NN architecture editing,
we designed an always-on live visualization of tensor shapes to
enhance a traditional text-based code editor. Our design originates
from the NN architecture editing background in section 3 and our
own experience. This section summarizes the objectives that the
live visualization should reach to serve the background of DL pro-
gramming introduced in section 3. For each objective, we describe
how we correspondingly design the functions.

Tensor-related semantics for NN architecture editing. When pro-
grammers face shape mismatch errors, they desire to view each
layer’s input and output tensor shape in the neural network. The
first objective of the live NN architecture editing is to make the
tensor shape transformation transparent to programmers in the
editing stage rather than the program execution stage. Therefore,
the live visualization starts by tracking a NN’s tensor-related se-
mantics. In contrast with a general-purpose program, a PyTorch
program computes new tensors in the forward method of the net-
work module. We use the state collecting semantics in this specific
method: at each line of the forward , we trace all the input and
output tensor shapes related to the line. We visualize the layer type
and input output tensor shape while ignoring other information
such as the parameters of layers.

Code-connected box visualization that informs tensor shape trans-
formation. The live visualization should maintain the connection
with the relevant code so that the user can quickly locate the tensor
shape transformation in the code editor. Figure 1 shows the tensor
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state box visualization. Each box represents one line in the program,
which floats at the right half of the editor and is connected to the
right end of the corresponding code by a straight line. A box shows
the input tensor shapes, the layer type, and the output tensor shapes
in three rows, from top to down (see Figure 2). Tensor shapes are
shown with visualization on the left and the shape information on
the right. Layers are represented using an arrow together with the
type of the layer. Besides, an extra red dot will show at the left top
of the box if any error occurs in the lines before the corresponding
code of the box to indicate that the information in the box has
been outdated (see Figure 2(b)). To avoid the common information
overload issue in live programming, we adopt three visualization
techniques from [17]: the auto-shrink effect, the fisheye effect, and
the transparency effect.

Configurable tensor shape visualization. Layers may require dif-
ferent types of tensor visualization. For example, in terms of the
input/output tensors of a convolution layer, the user needs the ten-
sor shape information of all dimensions, so the tensor visualizations
are best represented in 3D. In contrast, a linear layer’s input/output
tensors are best described in 1D because linear layers only receive
flat (1D) tensors. To address this desire, we enable the program-
mer to change the box view modes using a dropdown list at the
top bar of the interface or a keyboard shortcut. There are three
modes in the live visualization: a) Cuboid mode that draws tensors
using 3D-boxes, and the shape is displayed as a text in the form

(channels, height, width) . Cuboid mode is the default mode,
and it shows all information about the tensor shape; b) Rect mode
that draws tensors using 2D-boxes, and the shape is in the form

(height, width) . This mode does not show the channel size of
tensors directly but encodes it as the color of 2D-box; ¢) Line mode
that draws tensors using 1D straight lines, and the text of the shape
information is the total element number of the tensor. The live
visualization will automatically choose the default view mode for
different tensors. If the tensor is a 3D tensor, the live visualization
selects the cuboid mode by default; if the tensor is 2D, then the rect
mode; and if the tensor is 1D, then the line mode.

Nested network architecture inspection. In the early stage of our
design process, we conducted a casual interview involving four DL
experts. We showed the basic features of our live NN architecture
editor and listened to their needs as expert users. From their per-
spective, experienced DL programmers commonly need to define
some child networks consisting of repetitive layer sequences (e.g.,
ConvBatchNormReLU blocks) then reuse them in a larger parent
network. Therefore, there is another objective that the live visual-
ization should support the programmers inspecting those nested
NN architectures. Just like the code navigation function of IDEs for
general-purpose programming that hierarchically shows functions
and classes, the live visualization introduces a similar multi-level
inspector to help check the child network details inside a parent
network. As shown in Figure 3, the example program defines a
parent network Net and a child network FC . At line 37, Net

calls FC, thus on the interface the corresponding tensor state box
populates a clickable arrow. When the programmer clicks it, the
whole live visualization goes into the “deeper” network FC and
shows the tensor state boxes of the range between line 14 and line
18. The back arrow at the screen center enables back ways to the
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1 import torch
2 import torch.nn as nn
3 3x32x32
4 input_shape = [3, 32, 32] # Input Shape [1, 5] [24, 40] [24, 40] R
5
6 class Net(nn.Module): 1o xazE
7 def __init_ (self, in_ch=3, out_ch=128):
8 super(Net, self).__init_ ()
9 self.c@® = nn.Conv2d(in_ch, out_ch, 3, 1, 1)
10 self.cl = nn.Conv2d(out_ch, out_ch, 3, 1, 1)
11 self.b@ = nn.BatchNorm2d(out_ch, eps=1e-05, momentum=0.1) 128 x 32x 32
12 self.bl = nn.BatchNorm2d(out_ch, eps=1e-05, momentum=0.
1 batch_norm

13 self.a = nn.ReLU()
14 128x32x 32
15 def forward(self, x):
16 h = self.co(x)
17 h = self.bo(h)
18 h = self.a(h)
19 h = self.cl(h)
20 h = self.bl(h) 1exaznaz
21 return h Lol

128x32x32

Figure 1: The visualization of tensor state box.
[ ]
3x32x32 32 x 32 (——) 3072
b convad 1 convad 1l convad
128 x 32 x 32 32 x 32 P ) 131072

a) Cuboid mode

b) Rect mode

c) Line mode

Figure 2: The user can switch the tensor state box display within the three view modes.

parent network. The user can also navigate between the parent and
the child networks using a breadcrumb widget at the top-left of the
code editor.

5 IMPLEMENTATION OF ODEN AS AN IDE

NN architecture editing is not a standalone process in DL devel-
opment. Programmers repeat the process when they want to try
new ideas in their network architecture to pursue better model
performance[33]. Therefore, we package the live NN architecture
editing with some additional functions, including experimentation,
into an IDE named ODEN to make the live NN architecture edit-
ing speak of its value in a repetitive “editing then experimenting”
process. This section briefly describes how we implemented the
prototype of ODEN. We first overview the user interface, then walk
through the functions and the system implementation details.

5.1 User Interface

The user interface is shown in Figure 4. Figure 4 (a) is the live NN
architecture editor described in the section 4. (D) is the header bar
that contains some configurable items (including the dropdown
list to configure the visualization view mode); @ and 3 are the

code editor and the live network architecture visualization; @ is a
bidirectional manipulable widget where the programmer can drag
the sliders to mutate the input tensor shape; (3 is a drawer that
contains the experimentation panel where the programmer can
instantly test their network structures. The experimentation panel
pops up from the bottom when the drawer is clicked, and the user
interface will become the Figure 4 (b). In the experimentation panel,
(© is the editor to write programs that execute experiments on the
network architectures defined in @) and (3. (7) is a visualization for
the experiment version control, and @ is a parallel coordinate plot
that dynamically tracks hyper-parameters, network architectures,
and objective values.

5.2 Additional Features

5.2.1 Bidirectional manipulable widget. In the current ODEN pro-
totype, to enable the live network visualization, the programmer
needs to assign a tuple of the input tensor shape to a variable
input_shape . ODEN defines a special comment notation,

# Input Shape: , that populates a slider widget for input ten-
sor shape manipulation. The widget provides slider interfaces to
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class FC(nn.Module):
def __init__(self):
super().__init__()
self.fcl = nn.Linear(16 * 5 % 5, 120)
10 self.fc2 = nn.Linear(120, 84
self.fc3 = nn.Linear(84, 10

def forward(self, x):
x = self.fcl(x) @
x = F.relu(x)
x = self.fc2(x)
x = F.relu(x)
x = self.fc3(x)
return x

class Net(nn.Module):
def __init__(self):
super().__init__()
self.convl = nn.Conv2d(3, 6, 5)
self.pool = nn.MaxPool2d(2, 2)
self.conv2 = nn.Conv2d(6, 16, 5)
self.fc = FC()

def forward(self, x):
x = self.convl(x)
x = F.relu(x)
x = self.pool(x)
x = self.conv2(x)
x = F.relu(x)
x = self.pool(x)
x = x.view(-1, 16 * 5 * 5)

x = self.fc(x)| ) (’D

return x

@ Parent network
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400

120

400

@ Child network

Figure 3: Nested network architecture inspection. The user can click on arrows in the tensor box visualizations in the parent
network to expand child network details. The arrow between the editor and the visualization then enables the user to go back

to a “shallower” network level.

assist intuitive manipulation of the input shape. When manipu-
lated, the widget reflects the change in the text editor by updating
the tensor shape value. Inversely, value change of input_shape
also reflects on the widget synchronously. The programmer can
attach this particular comment following with the slider range to
the line where input_shape is assigned (See Listing 2). Then the
slider widget instantly populates at the top of the live visualization
(Figure 4 (a) @).

Listing 2: Comments to populate bidirectional manipulat-
able hyper-parameter axes.

input_shape = [3, 30, 32] # Input Shape: [1, 32] [4, 128]
< [4, 128]

5.2.2  The code editor in the experimentation panel. There is an-
other standard code editor (Figure 4 (b) (®) in the experimentation
panel. In the current implementation, the programmer must define
four providers in the editor before executing experiments, includ-
ing a data loader provider, an optimizer and criterion provider, a
training provider, and a testing provider. The programmer needs to
append a special comment notation # HyperOpt: to the lines that
contain hyper-parameter values in this code editor. Listing 3 shows
the example. In the notation, the brackets and parentheses define
the tweaking range and the data type of these hyper-parameters.
When the notation is appended, the experiment version control
and the parallel coordinate plot will responsively record a new
hyper-parameter in each experiment.

Listing 3: Comments to populate bidirectional manipulat-

able hyper-parameter axes.

batch_size = 63 # HyperOpt:batch_size [1, 256] (Integer)

optimizer = optim.SGD(net.parameters(), 1lr=0.001, momentum
< =0.9) # HyperOpt:1lr [0.0001, 0.1] (Float)

5.2.3 Experiment version control visualization. Inspired by version
control systems like Git, ODEN manages and visualizes the exper-
iments using a tree structure (See Figure 5 (a)). ODEN watches
the modification of all denoted hyper-parameters and the whole
network architecture, then synchronously populates new experi-
ment dots in the visualization. Experiment dots in the same branch
share the same NN architecture. Suppose the programmer goes
back to the live NN architecture editor and modifies the network
architecture. In this case, the visualization will instantly populate a
new branch and a new hollow dot that represents the current in-
edit experiment. If the programmer mutates the hyper-parameter
values denoted by the particular comment, the visualization will
also populate a new hollow dot but without switching the branch.
All experiment dots are clickable: the solid dots serve as triggers to
restore the codebase of previous experiments, and the hollow one is
for executing the in-edit experiment. Once the in-edit experiment
dot is clicked, the experiment will start training, then testing, and
finally render the new experiment result in the parallel coordinate
plot.

5.2.4  Parallel coordinate plot for checking hyper-parameters and
objective values. Parallel coordinate plots (PCPs) have been devel-
oped in hyper-parameter optimization analytic tools [19] and have
become an established practice in representing DL experiments.
Similarly, ODEN utilizes a parallel coordinate plot (PCP) to draw the
multi-dimensional experiment data consisting of hyper-parameters
and experiment result (In the example, it is Accuracy . See Fig-
ure 5 (b)). When the programmer adds a new comment to the
hyper-parameter to tweak and watch, the visualization instantly
populates a new draggable axis in the PCP. The hyper-parameter
axis acts like a slider that the programmer can directly manipulate
the parameter value in the visualization. And vice versa, the visual-
ization is bidirectional, which means that if the programmer edits
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ODEN @ [ Hide Sliders O Mute alert Cuboid -

1 import torch.nn as nn

2 import torch.nn.functional as F @ HERESRAEE

3

4 input_shape = [3,32,32] # Input Shape:[1,10] [1,128] [1,128]

5

6 class CRP(nn.Module):

7 def __init__(self, in_ch, out_ch):

8 super().__init__()

9 self.conv = nn.Conv2d(in_ch, out_ch, 3, 1, 1) texiexe

10 self.pool = nn.MaxPool2d(2, 2)

11

12 def forward(self, x):

13 x = self.conv(x) 16X 16X 16
14 x = F.relu(x)

15 x = self.pool(x) 4 model.crp2 ) r
i? return x 32x8x8
18

19 class Net(nn.Module):

20 def __init__(self):

21 super().__init__()

22 self.crpl = CRP(3, 16) sexexs

23 self.crp2 = CRP(16, 32) e >
24 self.crp3 = CRP(32, 64) frrax

25 self.crp4 = CRP(64, 64)

26 self.fcl = nn.Linear(64 x 2 % 2, 200)

27 self.fc2 = nn.Linear(200, 120)

28 self.fc3 = nn.Linear(120, 84)

29 self.fc4 = nn.Linear(84, 10)

30 axaxs

31 def forward(self, x): ' >

32 x = self.crpl(x) e

33 X = calf rrndlivhl
34 x Experimenting [] ~

(a) Live neural network architecture editor

Experimenting [Finished!] v

seed = ¥

torch.manual_seed(seed) @

3
4

5

6 random.seed(seed)

7 torch.backends.cudnn.benchmark = False

8 torch.backends.cudnn.deterministic = True
9 torch.cuda.manual_seed_all(seed)

10

11 def data_provider():

12 transform = transforms.Compose(

13 [transforms.ToTensor(),

| 14 transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))])

15

16 batch_size = 128 # HyperOpt:batch_size [1, 256] (Integer)

17

18 trainset = torchvision.datasets.CIFAR10(root="./data’,
train=True, download=True, transform=transform)

19 trainloader = torch.utils.data.DatalLoader(trainset,
batch_size=batch_size, shuffle=True, num_workers=2)

20 M

21 testset = torchvision.datasets.CIFAR1@(root="'./data’',
train=False, download=True, transform=transform)

22 testloader = torch.utils.data.Dataloader(testset,
batch_size=batch_size, shuffle=False, num_workers=2)

23

24 classes = ('plane', ‘'car', 'bird', 'cat',

25 ‘deer', 'dog', 'frog', ‘'horse', ‘'ship', 'truck')

26 return trainloader, testloader

(b) Expanded experimentation panel

Figure 4: The user interface of ODEN. (1) header bar contains some configurable items; (2) code editor for live NN architecture
editing; (3) live NN architecture visualization; (4) bidirectional manipulable widget to mutate the input tensor shape; (5) click-
able drawer that contains the experimentation panel; (6) editor to define experimentation providers; (7) experiment version
control visualization; (8) bidirectional manipulable parallel coordinate plot that tracks hyper-parameters and objective values.
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Figure 5: Two visualizations in the experimentation panel.

the parameter value in the text editor, the value will also instantly
reflect on the visualization.

5.3 Implementation Details

The current prototype of ODEN is a web-based application con-
sisting of a Python web server and an HTML/Javascript client.
The Python web server instantiates a GPU environment, injects
a PyTorch analyzer into the environment, and constantly collects
the information required for live visualization. The analysis of the
Python server is based on actual program execution rather than
statical code check like [15]. According to the discussion in subsec-
tion 3.3, tensor shape mismatch in linear layers can be addressed by
static code check because the layer definition directly indicates the
input and output tensor shape. However, the output tensor shape
of layers like convolution layers and pooling layers is influenced
by the layer definition and the input tensor shape, which makes
static code difficult to cover all layer types in NN architecture. Al-
though the analyzer also supports a CPU-only environment, we
recommend setting up the server on a GPU-on machine because
the training process relies highly on GPU acceleration. The client is
built in Electron and Vue.js and utilizes Monaco Editor as the text
code editor in ODEN. A user can install the client Electron app on
a laptop while the Python server runs on a GPU server as a typical
use case. The communication between the client and the server is
based on the JSON-RPC protocol. When the user edits the network
program or clicks on the hollow dot that controls the experiment,
the code is sent to the server and saved as a separate codebase file
with a hashed filename.

Network Tracking Session. We simulate a single iteration of the
user-defined network forward and backward computation in the
network tracking session to track the tensor shape transforma-
tion in the whole network. The user must define a class named

Network and a list named input_shape to enable the live in-

spection. The server-side analyzer loads the Network class defi-
nition and reads the input_shape list as the input tensor shape.
The analyzer then starts a tracking session, creates a dummy input
tensor that is in the same shape as input_shape , instantiates
the user network, and executes a simple iteration. Before that, the
session will inject a hook function to all PyTorch methods and mod-
ules in the computation graph, which records the input and output

torch.Tensor instance and gets their shape by calling built-in

size() method of the instance.

Code Association and Hierarchical Tensor Shape. The tracking
session utilizes a stack trace to record trace frames every time the
hooked computation nodes are invoked. The session first tracks
tensor shapes together with frame information while retaining the
call stack depth information. It then aggregates it into a nested form
that aligns with where the module or method is invoked in the user
code. For those nested networks that several subnetwork modules
are defined and called by each other, the shape information will
also have a nested representation.

Extensibility of Experiment Mode. In the experiment mode, the
user is required to implement four providers (See Figure 4 ©). The
data loader provider should return a training data loader and a test
data loader; the optimizer and criterion provider should return an
optimizer, a criterion layer, and a network instance; the training
provider should receive a network instance, an optimizer, a criterion
layer, and a training data loader, then return a trained model; a
testing provider should receive a trained model and a test data
loader, then return the test metric to display and record. When the
providers work as intended and the pipeline works as a whole, the
user can start the experiment. Nevertheless, the user can customize
these providers to extend to other loss functions or data loaders.
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6 USER STUDY

We conducted an exploratory study to obtain novice user feedback
on ODEN. The main goal of the study is to investigate the usabil-
ity, the limitations, and the potential of the live neural network
architecture editor. Seven programmers participated in the study. In
our pre-experiment questionnaire, the participants generally iden-
tify themselves as experienced in general-purpose programming
while not familiar with DL development. We requested them to
go through the usage scenario described in the PyTorch official
tutorial, “Deep Learning with PyTorch: A 60 Minute Blitz, Training
a Classifier,” copy-paste code snippets into the tool, and iteratively
adjust the parameters and the network structure in the program un-
til satisfied. They were asked to compare their impression of using
our tool with their prior experience of DL applications development
using other tools.

6.1 Participants

Seven participants aged from 23 to 32 years old (mean 26.57) took
part in the experiment, including five males and two females. All of
them are programmers (experience from 3 to 9 years; mean 5.14 and
standard deviation 1.95), and they are learning DL programming to
utilize the techniques for various purposes (e.g., research projects
and Kaggle contest). They have average knowledge towards DL
theory and know how DL works (for 5-point Likert scale of the
question “How much do you know about deep learning theory?”,
mean 3 and standard deviation 1), but lack knowledge about the DL
programming practice and do not develop DL models very often (for
5-point Likert scale of the question “How much do you know about
deep learning programming paradigm?”, mean 2.71 and standard
deviation 0.76; for 5-point Likert scale of the question “How often
do you develop a deep model?”, mean 2.14 and standard deviation
0.90). In terms of the developing tools for DL, two participants (P1
and P5) who mainly use existing TensorFlow models released on
GitHub and slightly edit the program prefer VSCode to fit their
needs. Three participants (P3, P4, and P7) are PyTorch users, who
develop their models with VSCode and notebook programming
tools like Jupyter and Google Colab. For detailed information of
the participants, please refer to Table 1.

6.2 Experimental Setup

The instructor set up the Electron client on a MacBook Pro 16 inch
2019 with a 1792 x 1120 equivalent resolution. The Python server
ran on a Ubuntu 20.04 machine with an RTX 2080 Super GPU, and
the server and the client laptop were in the same private network.
All the participants used remote desktop software to connect to the
client laptop, then remotely controlled and operated in the client
interface; meanwhile, the instructor and the participant joined the
same online meeting. The user interface was in full-screen mode
during the study. Next, the experiment follows the steps described
below, and the whole experiment took about 1.5 to 2 hours for each
participant.

6.2.1 Pre-experiment questionnaire. Each participant was required
to fill out an online form that collects their daily programming
language, general-purpose programming skill level, experience in
DL programming, and ML knowledge level.
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6.2.2 Introduction, tutorial, and practice. The instructor gave a 5-15
minute introduction and tutorial about ODEN IDE. First, the in-
structor went through the PyTorch tutorial with the participant and
introduced the related concepts. Next, the instructor demonstrated
the live NN architecture editing and other interactive functions in
ODEN. Finally, the participant could practice the system operations
as they want.

6.2.3 Network editing and experimentation iteration. The partici-
pants were required to finish an open-ended task within 1.5 hours
maximum: use ODEN to iterate the network and experimentation
programs until they are satisfied with the final model accuracy
based on the programs in the “Deep Learning with PyTorch: A 60
Minute Blitz, Training a Classifier” tutorial?. The participants start
from code snippets from the tutorial and then refine them. In each
iteration to improve the model, the participant needs to edit the net-
work structure or tune the hyper-parameters, then train and test the
model. The initial network in the tutorial is LeNet [16], the dataset
to train and test on is CIFAR10, and the model target is to clas-
sify images in ten classes of CIFAR10. The initial experiment setup
from the tutorial produces an accuracy of 55.83%, which is much
better than random guessing (10%) and not sufficient compared to
state-of-the-art (accuracy over 90%). During the open-ended task,
the participant was free to ask the instructor about the sugges-
tions to improve the accuracy, search NN architecture design tricks
on Google, and refer to classic NN architectures and open-source
code. In addition, we encourage participants to think aloud during
the task. The participant can also stop the study early if they are
satisfied with the experiment results.

6.2.4 Post-experiment questionnaire. Each participant was asked
to fill out a post-experiment form. The form includes a standard
system usability scale [6] (ten questions) to verify the usefulness of
the live NN architecture editor, one question for rating the transition
between the editing and experimentation, one question for rating
the nested network inspection, and two free comment questions
about the good and bad points of the user interface. When the
participants filled out the questionnaire, we had a casual interview
with them to talk about their impression of ODEN.

6.3 Results and Lessons Learned

The results of the improved model accuracy are shown in Figure 6.
From P1 to P7, the participants conducted 6, 8, 3, 6, 6, 11, and
3 iterations to improve the model accuracy. Compared with the
model accuracy of the default example code from the tutorial (=
55.83%), the participants improved the model accuracy to 75.7%,
67.6%, 81.0%, 61.0%, 73.0%, 67.4%, and 76.1% within 1.5 hours (for
each participant’s best record). All participants succeeded in in-
creasing the model accuracy. The analysis of the model accuracy
using paired t-test showed that the final model accuracy during
the task was significantly different (p < 0.05) from the initial model
accuracy. The results of the post-questionnaire consist of the mean,
standard deviation, and the percentage of positive responses (>3
on a 5-point Likert scale).Table 2 shows the results. The final SUS
score is calculated by averaging each participant’s SUS score, and

2Deep Learning with PyTorch: A 60 Minute Blitz, Training a Classifier, visited at Sep.
6th, 2021


https://pytorch.org/tutorials/beginner/blitz/cifar10_tutorial.html
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Table 1: The basic information of seven participants, including their occupation, preferred programming languages, purpose
to learn DL, and where they learned DL.

P# [ Occupation PL Purpose Where to learn DL
P1 Student Java Research Textbooks & Online Courses
P2 Student Javascript Research Lectures
P3 Student Python Research Lectures
P4 Student Python Research  Online Courses & Library documents
P5 Student Python Research Lectures
P6 | Software engineer Python & Javascript  Kaggle Online Courses
P7 Student Python Research Lectures & Papers
100% 12 30%
90% n
81.0% 10
80% 757% ] 73.0% 76.1% 25%
70% 67.6% T 67.4%
’ 8 61.0% — 8
60% 55.8% — 20%
50% 6 € 6 6
/ o X
40% 15%
4
30%
3 3 10%
20%
2
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0% 0
Initial P1 P2 P3 P4 PS5 P6 P7
Model 0%

(a)

(b)

Figure 6: Results of the improved model accuracy and experiment iteration numbers. (a) Left y-axis: Accuracy of the initial
model and the best records of all participants during the user study; right y-axis: the experiment iteration numbers by partic-

ipants. (b) Box chart of the incremental accuracy.

the details of the SUS score calculation method are described in
[6]. The final SUS score of the live NN architecture editor is 84.64.
(The standard SUS score is 68, and our score of 84.64 is regarded as
excellent and has the grading scale of Grade A [5].

6.3.1 Several usage scenarios exist in actual NN architecture editing.
. We found that during the open-ended task phase, the participants
might choose three different usage scenarios to refine the NN ar-
chitecture: the first one is to add or reduce layers slightly on the
example network architecture following some heuristics (P1, P4 “I
know the common way to improve the model accuracy is to make the
network deeper by adding more layers to it”); the second one is to
search for more complicated and classic NN architecture for the
same task and modify the original network by making it similar
to the reference (P3 “I take the VGG [25] network architecture as
the reference and use the similar shape and layer sequences in my

network.”); the third one is to program a same complicated network
such as VGG in the editor completely, or even copy-paste a net-
work architecture program into the live NN architecture editor then
modify (P7 “I'd like to see how the ResNet [10] works on the dataset.
I will copy-paste an existing program from GitHub into the inter-
face.”). In the conversation with the participants, we knew which
usage scenario to choose is case by case. (P4 “For me, to choose
to program from scratch or copy-pasting depends on how casual
the model building is”) In the three usage scenarios, participants
successfully improved the model accuracy within the limited time
using ODEN, and the live NN architecture visualization smoothly
visualizes all the programs. In practical NN architecture building,
users will follow some scenarios that are similar to the strategies
our participants adopted in our user study: users may build a NN
from scratch by referring to a diagram in a research paper; or users
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Table 2: Results of the post-experiment questionnaire. ﬂ indicates higher scores are better. ﬂ for the other case.

# [ Questions Mean SD %

1 | Ithink that I would like to use the live network editing frequently. ﬂ 471 049 7/7
2 | I'found the live network editing unnecessarily complex. Jl 214 090 1/7
3 | Ithought the live network editing was easy to use. ﬂ 443 053 7/7
4 | Ithink that I would need the support of a technical person to be able  2.14  1.07 2/7

to use this live network editing. U

5 | I found the various functions in this network editing were well inte- 4.29 049 7/7

grated. ﬂ

6 | Ithought there was too much inconsistency in the live network editing. 157  0.53 0/7

7 | I would imagine that most people would learn to use the live network  4.57 053 7/7

editing very quickly. ﬂ

8 | I'found the live network editing very cumbersome to use. Jl 1.14 038 0/7
9 | I'felt very confident using the live network editing. ﬂ 443 053 7/7
10 | I needed to learn a lot of things before I could get going with the live ~ 1.57  0.53 0/7

network editing. ﬂ

11 | Rates of the transition between the editing and experimentation. ﬂ 429 049 7/7
12 | Rates of the inspection support for nested networks. ﬂ 443 053 7/7

may start from copy-and-pasting existing programs then modify
them. We believe that ODEN can support either actual scenarios
above.

6.3.2 Instant synchronization between the network program and
the visualization greatly assists in NN architecture editing. . In all
of the usage scenarios above, the participants appreciated the live
programming nature in the live NN architecture editor. P3 com-
mented that “I also often encountered the shape mismatch errors in
my implementing experience. They indeed bother me. With ODEN’s
live NN architecture editor, I can significantly avoid these errors if I
face not only the text program but also a visualization like this.” P4
appreciated that “When I want to implement a network architecture,
I usually have to draw a scratch of the tensor shape sequence on a
whiteboard as a reference. The live NN architecture editor benefits me
a lot because, with it, I won’t need to draw the network from scratch
anymore.” P1 and P4 said, “I will have a rough diagram towards the
network in my mind (before the implementation). With the visual-
ization, I can verify whether the code is consistent with my mental
image or not.” P7 rethought her programming experience using
Google Colab and commented: “When working on neural networks
with PyTorch, I often get confused with shape inconsistency errors. I'd
love to see some live shape visualization implemented in my work
environment as well.”

6.3.3  Support for nested network architectures enables better code
reuse. During the task and the interview, some participants found
the nested network support greatly helps them reuse existing NN
programs. “I seldom develop my own neural network architecture from
scratch. On the contrary, I often start from cloning an existing GitHub
repository with trained neural networks.” said P1, “When I conduct
transfer learning on my own dataset, I sometimes need to adjust
the NN architecture depending on my case. The support for nested
networks helps a lot for me because most of the open-source neural
network architectures are not linear but hierarchical.” P3 appreciated

that “I can directly copy and paste my previous networks into this
interface!”

6.3.4 Smooth transition between NN architecture editing and exper-
imentation. All of our participants thought the whole exploration
process in the open-ended task was exciting and relaxing and spoke
high of the transition between NN architecture editing and experi-
mentation. “Because playing with the experimentation won’t cause
stress to me.” P5 said, “The tracked overall experiment history helps
me record the accuracy right after my editing on the neural net-
work architecture.” P1 appreciated the special notation to specify
hyper-parameters and the experiment version visualization of the
experimentation panel: “It (the # HyperOpt: notation) makes ev-
ery variable clear. I can easily figure out which hyper-parameter
matters in experimentation.”

6.3.5 Non-positive comments on ODEN implementation. Partici-
pants provided some negative comments about the implementation
of ODEN.

o The live visualization is a bit intrusive — P3 “Although it (the
live visualization) helps me a lot, it contains too much blank
and occupies too much space on the screen.” P7 “I thought
the live visualization could be improved by having visualiza-
tion for each line in-situ. It was a bit hard to navigate which
shape corresponds to which line in the current implementa-
tion. I hope the shape visualization could be more static.” As a
quick fix to this feedback, we implemented another two con-
figurable modes in ODEN: a “calm mode” that disables the
visualizations but decorates the code editor background with
text-form tensor shape; a “stealth mode” that only retains
the original code editor.

e How to design a neural network architecture is puzzling
to novices — “Without your (the instructor) advice on how to
modify the network, I may have no idea what I should do to
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improve the performance. Therefore I hope that a system can
guide how to design a neural network architecture.”

e Implementation limitation — P1 encountered an implementa-
tion bug when copying and pasting a ResNet18 architecture
into ODEN from a GitHub repository. For code that calls
several layers in the same line but does not wrap these layers
into a child network, e.g.,

F.relu(self.batchnorm(self.conv(x))) , ODEN did not
provide the best visualization layout in the corresponding
box visualization and resulted in text overlapping. We then
fixed the bug after the user study.

7 DISCUSSION AND LIMITATIONS

The choice to build a custom IDE and the extensibility for common
editors. The current implementation of ODEN is merely a research
prototype. We built a custom IDE because it is easier to implement
and test our live visualization and editing features on a custom
IDE than on existing ones. The major challenge of integrating
all our proposed features into an existing IDE is the significant
engineering effort needed to hack into a full-fledged system. On
the other hand, the advantage of building an IDE from scratch is
that we can fully utilize the flexibility of engineering and maximize
the liveness and seamlessness of our live editor. Therefore, we
focused on our core contributions and left the integration to other
existing IDEs as future work. Nevertheless, our standalone server-
side analyzer retains the extensibility for other clients. We believe it
is possible to implement the frontend client as a plugin for existing
IDEs meanwhile reusing the server-side analyzer.

Versatility on existing neural network architectures. Current ODEN
implementation only supports CNN architectures that receive 2D
images as input. We have tested ODEN on nested network architec-
tures like DenseNet [13], VGG [25], ResNet [11], and DCGAN [23],
inputting with code from public GitHub repositories. ODEN suc-
cessfully analyzed and visualized these architectures. We think
ODEN is versatile enough to support the typical usage scenario
that the user directly reuses a network architecture from a public
codebase. We have conducted another casual expert interview in-
volving four DL experts after our implementation. We showed the
test results to the experts. They gave positive feedback and agreed
that ODEN can conveniently visualize their existing codebases.

Automatic tensor shape mismatch fix. The current design of the
live NN architecture editor provides synchronous tensor shape
visualization for the programmer’s reference. The programmer still
needs to manually fix the tensor shape mismatch in the program.
The automatic tensor shape mismatch fix is attractive to novice
programmers. Still, since most layers receive a specific tensor shape
pattern rather than a unique shape, there is no unique solution to a
particular tensor shape mismatch. Instead, automatically suggesting
several solution candidates can be future work to this problem.

Guidance for neural network architecture design. One of our par-
ticipants during the user study stated that novice DL programmers
need advice and heuristics about how to design a neural network
architecture with good performance. Yan et al. created a large-scale
visualization to help find insights of design choice in NN archi-
tecture [33], and Schoop et al. designed a system that analyzes a
DL program and advises on potential performance issues based
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on heuristics [24]. How an interface can dynamically predict the
performance of an in-edit NN architecture and suggest novice pro-
grammers better design choices in NN architecture building remains
to be explored.

The potential application for model migration. Model and codebase
migration between different DL libraries require much engineering
effort. Although projects such as ONNX [4] provide a standard
representation for models and networks in various libraries, a user
interface still lacks that supports model migration between DL
frameworks, e.g., model weight matching, codebase conversion,
and accuracy validation. Since our current prototype only supports
PyTorch, one of our future works is to design a live programming
interface that supports model migration.

Further enhancement for parameter tweaking. The DL parame-
ter tweaking [12] is challenging even in sandboxed experiments.
During the interview, one of our participants said: “Sometimes it
is just like lotteries”. The proposed visualization and IDE mainly
provide a stage for the live editor. How to extend the visualization
to support parameter tweaking remains to be explored.

8 CONCLUSION

We proposed a live NN architecture editor that utilizes live pro-
gramming techniques to help novice DL programmers solve ten-
sor shape mismatch errors in NN architecture editing. The editor
synchronously displays tensor box visualizations that show the
input/output tensor shapes at lines that the tensor computation is
executed. We implemented the live editor and integrated it into
an IDE called ODEN. With ODEN, programmers can freely edit
the neural network architecture and instantly train/test the edited
network architecture. We conducted an exploratory user study. We
found that the live NN architecture editor is intuitive and helps
solve tensor shape mismatch errors significantly. We found some
practical usage scenarios during the interviews with our partici-
pants. Further enhanced interface for hyper-parameter tweaking
and NN architecture design is the future work.
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