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Abstract
Acquiring the desired font for various design tasks can be challenging and requires professional typographic knowledge. While
previous font retrieval or generation works have alleviated some of these difficulties, they often lack support for multiple
languages and semantic attributes beyond the training data domains. To solve this problem, we present FontCLIP – a model that
connects the semantic understanding of a large vision-language model with typographical knowledge. We integrate typography-
specific knowledge into the comprehensive vision-language knowledge of a pretrained CLIP model through a novel finetuning
approach. We propose to use a compound descriptive prompt that encapsulates adaptively sampled attributes from a font attribute
dataset focusing on Roman alphabet characters. FontCLIP’s semantic typographic latent space demonstrates two unprecedented
generalization abilities. First, FontCLIP generalizes to different languages including Chinese, Japanese, and Korean (CJK),
capturing the typographical features of fonts across different languages, even though it was only finetuned using fonts of Roman
characters. Second, FontCLIP can recognize the semantic attributes that are not presented in the training data. FontCLIP’s
dual-modality and generalization abilities enable multilingual and cross-lingual font retrieval and letter shape optimization,
reducing the burden of obtaining desired fonts.

1. Introduction

Acquiring a suitable font is a crucial step in many design work-
flow, especially when designing a poster or a banner with cross-
lingual characteristics. While previous works have facilitated font
retrieval [OLAH14, CWX∗19] and generation [WGL20, WL21],
they are often limited to the languages and attributes presented in
the training data. The available datasets [OLAH14, CWX∗19] only
include Roman fonts and their associated attributes, which does
not allow users to obtain fonts in other languages. Furthermore, the
current datasets have limited annotated attributes, which prevents
users from specifying their desired fonts freely.

In this paper, we tackle these deficiencies by defining a se-
mantic latent space connecting language and visuals to typogra-
phy to enable multilingual and cross-lingual font retrieval and
editing tasks. We base our technique on modifying a pretrained
vision-language model trained on large-scale natural image and
text pair, and without requiring any additional data-gathering be-
yond what is already available. Models such as CLIP (Contrastive
Language–Image Pre-training) [RKH∗21], have demonstrated ex-
ceptional capabilities in learning aligned visual and language fea-
tures. CLIP has exhibited remarkable zero-shot recognition capabil-
ities, empowering a wide range of downstream visual recognition
tasks [KCG∗23,ZZL∗22,LBW∗22,ZLD22]. Additionally, the latent

space of CLIP has been used for various content generation applica-
tions, including images [RDN∗22], abstract sketches [VPB∗22], 3D
avatars [HZP∗22], and artistic images [RBL∗21]. These works col-
lectively highlight that CLIP’s latent space carries profound seman-
tic understanding that can connect between language and visuals.

However, typography is a very specialized domain that is differ-
ent from natural photographs, paintings, or sketches, which were
originally used to train CLIP. Hence, simply using the original CLIP
model cannot effectively recognize visual typographic character-
istics and establish meaningful connections with language repre-
sentations, as illustrated in Figure 2. The primary reason for this is
the substantial domain disparity between the typographical image
and those portraying natural scenes. Moreover, the language used to
describe typographic data often diverges from the descriptions of
natural scenes represented in different styles.

We present FontCLIP, a CLIP-based model specifically designed
to learn a semantic typographic latent space that bridges language
and visual typographic attributes, enabling various typographic ap-
plications. By finetuning a pretrained CLIP model on font data with
attribute scores, we enhance its zero-shot recognition capability
and enable it to generalize to the typography domain. The learned
features of FontCLIP enable prediction of multilingual visual ty-
pographic attributes with the ability to generalize to out-of-domain
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Figure 1: FontCLIP enables the following typography-specific appli-
cations. (a) Dual-modal font retrieval: our method retrieves results
that preserve the style of the query font image (text with frame)
while incorporating the desired attributes. (b) Cross-lingual font
retrieval: our method retrieves results in other languages with a
similar query font image style. (c) Language-driven vector font
optimization: our method manipulates the shape of input letters
aligning with a set of desired attributes.

attributes. Remarkably, we achieve these generalizations by using
an existing Roman character dataset without the need for collecting
any new data.

Finetuning FontCLIP is accomplished using a novel compound
descriptive prompt that encapsulates multiple attributes within a
single prompt. To determine the attributes included in the com-
pound descriptive prompt, we adaptively sample them to cover the
distribution of attribute scores and convert continuous score into
sampled text. In our finetuning process, we use a randomly gener-
ated compound descriptive prompt and a font image with a random
augmentation transformation at each iteration, thereby significantly
expanding the original font attributes dataset [OLAH14].

We evaluated the performance of FontCLIP through quantitative
experiments that assessed the correlation between the predicted and
manually annotated attribute scores. Our experiments reveal that the
finetuned FontCLIP model, originally trained on Roman alphabet
characters with 37 attributes, exhibits unprecedented generalization
capabilities. First, FontCLIP is capable of generalizing to out-of-
domain languages, which makes it possible to use it for multilingual
and cross-lingual font-related tasks. Second, it can generalize to out-
of-domain attributes, which means it can be used for font retrieval
and editing using language descriptions beyond the original attribute
set. Lastly, by leveraging the dual-modality of CLIP, FontCLIP
allows users to obtain the desired fonts through both desired text
attributes and font image examples.

We demonstrate FontCLIP in two major applications: (1) a novel
dual-modal font retrieval interface that surpasses the traditional drop-
down list interface in terms of user satisfaction and achieves similar
performance without using vector-based typographical features ex-
tracted from all Roman characters and, (2) a novel optimization
framework that utilizes FontCLIP latent space to manipulate vector
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CLIP
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Figure 2: Glyph images of Roman and Chinese letters sorted by (a)
“complex, italic”, (b) “strong”, (c) “warm”, and (d) “thin” attribute
scores predicted by CLIP and FontCLIP. FontCLIP’s sorting aligns
more closely with human perception.

letter shapes based on desired attributes or font image examples,
thereby opening up exciting possibilities for font customization
(see Figure 1).

To sum up, we make the following contributions:

• To the best of our knowledge, we present the first visual-language
model that learns a semantic typographic latent space. Through
experiments and user studies, we validate its generalization abili-
ties over multilingual and out-of-domain attributes.

• We present a novel approach to finetune a vision-language model
using font data with attribute scores.

• We present a dual-modal font retrieval application based on Font-
CLIP that uses visual examples and language descriptions to
search for appropriate fonts across different languages.

• We present an optimization-based method to modify the shape
of letters in vector representation to better match either a set of
language descriptions or a visual input image sample.

2. Related Work

2.1. Vision-Language Representations and Applications

Traditional visual recognition models are often constrained in their
practicality since they are trained to recognize a predetermined set
of object categories. Hence, they require additional labeled data
to generalize to new visual concepts and domains. However, re-
cent advancements in large vision-language models pretrained on
vast image-text pairs have demonstrated that such models can ac-
quire rich image and object-level visual representations [RKH∗21,
JYX∗21, LZZ∗22]. These models are semantically rich because
the paired texts contain a broader set of visual concepts than any
pre-defined concept set. Thus, the learned representations can be
directly used for downstream image recognition tasks such as image
classification [RKH∗21, JYX∗21], object recognition [KCG∗23],
image segmentation [ZZL∗22, LBW∗22, ZLD22], and text-image
retrieval [LROTG21] in zero-shot setting. Moreover, the learned
representations are applied to 3D shape classification [ZGZ∗22],
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3D part segmentation [LZC∗23], 3D avatar and shape genera-
tion [HZP∗22, MBOL∗22, MKXBP22, GAG∗23, TGH∗22] and
NeRF generation and manipulation [JMB∗22, WCH∗22] tasks. To
the best of our knowledge, we propose the first semantic typog-
raphy visual-language model that connects language and visual
typographic attributes. By doing so, FontCLIP enables font retrieval
and manipulation tasks with a broader range of semantic concepts,
expanding the possibilities for font customization and exploration.

2.2. Font Retrieval and Interface

Font selection is the process of selecting fonts from a set of fonts
based on user-specified conditions across different formats. When
the desired fonts are presented as images, traditional visual font
recognition approaches identify the typeface, weight, and slope
of text within them [WYJ∗15, CYJ∗14]. In the context of graphic
design, users frequently aim to find a font that complements the
overall design elements. As a result, they often rely on traditional
font selection interface, such as a long list of font names, which
is overwhelming to navigate and utilize. To address this issue,
O’Donovan et al. [OLAH14] proposed selecting fonts using se-
mantic attributes and collected a font attribute dataset. More recent
advancements have introduced larger font attribute datasets and deep
learning-based methods to improve the accuracy and efficiency of
font retrieval [CWX∗19,CMA19]. However, these previous attribute-
based font selection methods only work on in-the-domain attributes
and scripts. In contrast, using FontCLIP latent space enables font
retrieval with out-of-domain attributes and scripts, thereby offering
enhanced flexibility and efficiency in font selection.

2.3. Vector Font Generation

Example-based methods generate a complete character set of a
font [SI10] or a personalized handwritten style [CLJ∗15, LZCX18]
from a single character. Parameterizing fonts is another method
that allows users to create novel fonts by adjusting a set of parame-
ters [SR98, Knu82]. Campell and Kautz [CK14] took a step further
and presented the first generative model for fonts. By exploring the
learned manifold, the model enables interpolation between exist-
ing fonts and the discovery of new fonts. Recently, various deep
learning-based methods have been proposed for synthesizing vec-
tor glyphs [LHES19, CDAT20, WL21, RGLM21]. However, these
methods often require users to provide sample characters of the de-
sired font, making them challenging if they lack such resources. To
address this issue, Wang et al. [WGL20] proposed Attribute2Font,
which generates glyph images solely based on user-specified at-
tributes. However, they can only generate bitmap glyph images for
attributes and languages that are included in the training data. Thus,
to generate bitmap glyph images for new attributes or languages,
more training data is necessary. In contrast, our method can generate
vector fonts that are easily manipulable. Moreover, our method can
generate vector fonts for attributes and languages that are not part
of the training data without requiring additional training data.

Our vector font optimization method is inspired by Word-As-
Image [IVH∗23], but with two significant differences. First, while
Word-As-Image focuses on deforming a vector letter toward a con-
ceptual visual representation (e.g., cat or dog), our optimization
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Figure 3: Overview of FontCLIP finetuning. During each finetun-
ing iteration, we randomly select attributes based on their scores
from an existing font-attribute dataset and create a compound de-
scriptive prompt for each font. Simultaneously, we generate a font
image and apply a random augmentation transformation to enhance
variability. We finetuned the last three transformer blocks (high-
lighted in red) for both encoders using a pairwise similarity loss
function.

method using FontCLIP concentrates on capturing and reconstruct-
ing typographical features of each character (e.g., thin, italic, and
serif). As we demonstrated in Figure 10, our method is more ef-
fective at capturing and reconstructing typographical features than
Word-As-Image. Second, our optimization method utilizes Font-
CLIP’s text and image encoder, which allows for dual-modal font
optimization. In contrast, Word-As-Image only operates on text in-
put. This makes our optimization method more practical and useful
for capturing fonts in real-world scenarios, as shown in Figure 13.

3. CLIP Preliminaries

CLIP [RKH∗21] is a vision-language model pretrained on a large
number of image-text paired data and trains both an image encoder
EI and a text encoder ET to a joint latent space. During training,
CLIP uses a contrastive loss to learn a joint embedding for the two
modalities. Specifically, for a mini-batch of image-text pairs, CLIP
maximizes for each matching image-text pair the cosine similarity of
their embeddings while minimizing the cosine similarities with all
other unmatched texts/images. After training, the joint latent space
of CLIP enables various downstream image processing and vision
tasks in a zero-shot manner. For example, in image classification,
given an input image I, its image embedding (x = EI(I)) is found
using the image encoder, and a set of text embeddings ({wi =
ET (Ti)}K

i=1) are found using the text encoder. In particular, each wi
is derived from a prompt Ti, such as “a photo of a {class}” where
the “{class}” token is filled with the i-th class name. The prediction
probability of class y is then defined as:

p(y|x) = exp(sim(x,wy)/τ)

∑
K
i=1 exp(sim(x,wi)/τ)

(1)

where sim(·, ·) denotes cosine similarity and τ is a learned tempera-
ture parameter.

4. FontCLIP

Our goal is to learn a semantic typography latent space that can
be effectively used for various typographic applications, including
font retrieval and optimization-based font manipulation. To achieve
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this goal, we focus on incorporating typography-specific knowl-
edge into the existing large pretrained vision-language model CLIP.
Our approach is to finetune a pretrained CLIP model using pairs
of descriptive prompts and font image as inputs derived from a
font-attribute dataset (Figure 3). In the following, we provide the
technical details of our finetuning approach as well as the rationale
behind its design.

4.1. Finetuning - Training Data

For finetuning, we use the dataset from [OLAH14]. This dataset
consists of 200 Roman fonts, each annotated with 37 attribute scores.
The attributes in the dataset can be broadly classified into two cate-
gories. Some of these attributes are related to the shape of the fonts,
such as “serif”, “italic”, and “thin”. The other attributes describe
perceptual qualities such as “friendly”, “warm”, and “happy”. Each
font in the dataset is assigned scores ranging from 0 and 100 for each
attribute. Among these attributes, there are some binary attributes:
“capitals”, “cursive”, “display”, “italic”, “monospace” and “serif”,
meaning that they are assigned a score of either 0 or 100. To suit our
finetuning requirement, we modify the original dataset and create a
prompt-based dataset that aligns better with our objectives.

4.1.1. Compound Descriptive Prompt

Radford et al. [RKH∗21] introduced a hand-crafted prompt: “a photo
of a “{class}” for generic objects and scenes. However, in the case
of our font dataset, each font is characterized by multiple attributes
simultaneously with continuous scores, which differs from the origi-
nal classification task that the original CLIP model was trained on.
As a result, the above simple prompt is inadequate for accurately
describing each font in our dataset. To overcome this challenge, we
propose to use a compound descriptive prompt, combined with an
adaptive sampling technique, to generate a more comprehensive and
descriptive prompt for each font in our dataset.

During each finetuning iteration i, we generate the compound
prompt T F

i for a font F as

T F
i = “This is [A]1, [A]2, ..., [A]N font.”, (2)

where each [A]n represents the n-th sampled attribute and N denotes
the total number of attributes sampled. Throughout the finetuning
process, we randomly set N to between 1 and 3 for each iteration.
To determine the expression for each attribute, we consider whether
its score is over or below 50. Specifically, if the score is over 50,
we use the expression [A]n = “[attribute]”. Conversely, if the score
is below 50, we use [A]n = “not [attribute]”. For example, if the
score of attribute “happy” for font F exceeds 50, the corresponding
expression in the compound prompt is set to “happy”. Otherwise,
it is set to “not happy”. We randomly selected attributes for each
font based on their attribute score distribution. Specifically, the
probability of attribute a being selected is computed as

p(a) =
∥S(a)−50∥

∑
37
i=1 ∥S(ai)−50∥

, (3)

where S(a) represents the score of attribute a. We show how we
generate a compound descriptive prompt in the top row of Figure 3.

4.1.2. Font Image

To generate the training images for each font in the dataset, we
adopt the same approach used by O’Donovan et al. [OLAH14].
Specifically, we render an image of each font using the text “The
quick brown fox jumps over the lazy dog”, which is widely used
for displaying font samples due to its inclusion of a diverse range
of letters [OLAH14, KdM20]. To enhance the robustness of our
finetuned model, we apply standard data augmentation techniques
such as rotation, cropping, and scaling to the font image (refer to
Figure 3).

4.2. Finetuning - Loss Function

Our finetuning method does not apply the CLIP-style contrastive
learning [RKH∗21] directly. Instead, it only requires positive pairs
that include a compound descriptive prompt and a font image. The
reason for this is that negative expressions like “not [attribute]” are
already incorporated in our compound descriptive prompt. Thus,
we can finetune the pretrained model to learn effective semantic
typographic latent space solely by maximizing the cosine similarity
between the embedded vectors of the compound descriptive prompts
and those of their corresponding font images. Specifically, given a
pair of a font image IF and a compound descriptive prompt T F , we
define the pairwise similarity loss function as:

LPS =−1
n

n

∑
q=1

EI(IF
q ) ·ET (T F

q )

∥EI(IF
q )∥∥ET (T F

q )∥
, (4)

where n is the number of font descriptive prompt and font image
pairs, EI and ET are the image and text encoder of the finetuned
CLIP model, respectively.

4.3. Implementation Details

Our finetuning approach is based on the pretrained ViT CLIP model,
which is publicly available on Hugging Face†. Throughout the fine-
tuning process, we update the weights of the last three transformer
block layers in both text and image encoders for 3,000 epochs,
while keeping the remaining weights frozen. We use the Adam op-
timizer [KB15] with a learning rate of 2× 10−5, which is halved
every 500 epochs. The resolution of the font image used in finetun-
ing is 214×214. In our setting, the finetuning process took around
12 hours on a machine equipped with an i7-12700K CPU with 32GB
memory and RTX3080 GPU with 10GB memory.

5. Experiments

We conducted experiments using in-domain and out-of-domain at-
tributes to evaluate the performance of FontCLIP. Specifically, we
measured the correlations between the attribute score predicted us-
ing the FontCLIP features and the ground truth attribute score using
the dataset from [OLAH14].

† https://huggingface.co/sentence-transformers/
clip-ViT-B-32
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Model In-domain ↑ Out-of-domain↑

CLIP 0.159 0.159
FontCLIP (w/o CDP) 0.704 0.317

FontCLIP 0.723 0.404

Table 1: The average correlations for in-domain attributes and out-
of-domain attributes of CLIP, FontCLIP trained without using com-
pound descriptive prompts (w/o CDP), and FontCLIP trained with
CDP (ours). By using CDP, FontCLIP can better generalize to out-
of-domain attributes.

5.1. In-Domain Attributes

The first experiment aims to evaluate the consistency for in-domain
attributes, wherein all attributes are used during the finetuning of
each model. We used all 200 fonts from [OLAH14], which we ran-
domly divided into 140 fonts for training, 30 fonts for validation,
and 30 fonts for testing. We finetuned FontCLIP using the 140 fonts
from the training set. For each font F in the testing dataset and for
each attribute [A], we calculated the similarity score between the
font and the attribute in the following process. First, we obtained the
visual embedding vector EI(IF ) of the font visual prompt IF associ-
ated with F . Next, from the attribute [A], we created a descriptive
prompt TA: “This is a [A] font.” and obtained the text embedding
vector ET (TA) for this prompt. Finally, we calculated the cosine
similarity between EI(IF ) and ET (TA). We considered a model’s
performance as the average correlation between predicted attribute
scores and ground truth scores for all fonts in the testing set across
all attributes. We compared three models: FontCLIP without using
compound descriptive prompts (CDP), FontCLIP with CDP, and the
baseline CLIP model.

As shown in the first row in Table 1, all variants of FontCLIP sur-
passes CLIP by a substantial margin. This observation suggests that
FontCLIP has effectively learned the relationship between visual
typographic attributes and the corresponding semantic attributes
described by language, resulting in attribute ratings that are more
aligned with human ratings. In addition, we provide a visualization
of the correlation between predicted similarity scores and ground
truth scores for the attributes “thin” and “playful” in Figure 4. This
visualization allows us to observe the alignment between the pre-
dicted attribute scores and the ground truth scores. We also include
correlation visualizations for other attributes in the supplemental
material.

5.2. Generalization to Out-of-Domain Attributes

To evaluate the generalization capability of the FontCLIP latent
space to out-of-domain attributes, meaning they are absent in the
finetune training data, we conducted a leave-one-out experiment.
During this experiment, we used all 200 fonts as training data for
finetuning the model but excluded one attribute at a time during
the finetuning process. Then, we calculated the average correlation
between the predicted similarity score and ground truth attribute
scores for all fonts, solely for the excluded attribute. This process
was repeated for each attribute in the dataset from [OLAH14], result-
ing in a total N finetuning process, where N represents the number
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Figure 4: The visualization of the correlation between the predicted
similarity scores from CLIP and FontCLIP, and the ground truth
scores for (a) “playful” and (b) “boring” attributes.

Font A Font B

(a) Font A or Font B is more "formal"? (b) Font A or Font B is more similar to Reference Font?

Font BReference Font Font A

Figure 5: (a) In the pairwise attribute prediction task, we use a classi-
fier to determine which font has a higher attribute score between two
font options. (b) In the pairwise similarity prediction task, we use
a classifier to determine which font is more similar to a reference
font between two font options. In both tasks, the obtained results
are compared with human judgments, and the prediction accuracy is
calculated as the performance metric.

of attributes. The performance of each model was evaluated by
computing the average correlation across all N attributes.

The results presented in the second row of Table 1 highlight that
FontCLIP (w/o CDP) already performs better than CLIP. Moreover,
the inclusion of CDP noticeably enhances the correlations. These
findings indicate that FontCLIP can effectively generalize to out-
of-domain attributes with straightforward finetuning and compound
descriptive prompts. Additionally, we provide the correlation scores
of all attributes in the supplemental material.

6. Dual-Modal Multilingual Font Retrieval

O’Donovan et al. [OLAH14] introduced attribute-based and
similarity-based interfaces that enhance traditional dropdown menus
with a list of font names. Inspired by their work, we propose
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Model Accuracy ↑

CLIP 51.87%
FontCLIP 65.32%

Feature-based 65.73%

(a): Pairwise attribute prediction.

Model Accuracy ↑

CLIP 67.68%
FontCLIP 74.39%

Feature-based 75.95%

(b): Pairwise similarity prediction.

Model In-domain accuracy Out-of-domain accuracy

CLIP 54.92% 42.26%
FontCLIP 64.14% 64.48%

Feature-based N/A N/A

(c): CJK fonts pairwise attribute prediction.

Table 2: (a)(b) For both the pairwise attribute prediction task and
pairwise similarity task, FontCLIP outperforms CLIP’s performance
and achieves similar performance to the best model that relies on
geometric typographical features computed from the vector-based
font file including all characters (“Feature-based”) [OLAH14], while
our FontCLIP-based method only requires a font image as input. (c)
The FontCLIP latent space generalizes to out-of-domain attributes
and to multiple languages. Note that previous feature-based methods
require the vector-based font files, cannot recognize out-of-domain
attributes, and might be able to support multi-lingual capabillities
only if they had access to the multi-lingual fonts files (although this
has never been tested).

leveraging the FontCLIP latent space for dual-modal font retrieval
tasks. Besides the attribute-based interface, our interface facili-
tates image-based retrieval, which does not require the user to
obtain the vector-based font files covering all characters, unlike
O’Donovan et al. [OLAH14]. Moreover, our interface allows for
any combination of the attributes and images. In addition, the Font-
CLIP latent space exhibits the capability to generalize beyond Ro-
man fonts, allowing it to support multiple language settings. In the
following sections, we present quantitative evaluations for attribute-
based, image-based, and cross-lingual font retrieval, along with
qualitative evaluation of multilingual and cross-lingual font retrieval
using a combination of attribute and image inputs.

6.1. Quantitative Evaluation

To quantitatively evaluate the attribute-based and image-based font
retrieval, we follow the experiment setup outlined in [OLAH14]
and focus on in-domain attributes. For attribute-based retrieval, we
conduct the pairwise attribute prediction task, while for image-based
retrieval, we evaluate the pairwise font similarity prediction task.
In both tasks, we use the complete 200 fonts and the 31 adjectives
attributes in the dataset from [OLAH14]. Our main goal of FontCLIP
is to enable font retrieval without the need to access the original
vector-based font files. Therefore, we primarily focus on comparing
the performance of FontCLIP and CLIP because both methods
use font images as input instead of the vector-based font files. For
reference, we provide a performance of the best machine learning
model using vector-based typographical features [OLAH14].

Pairwise Attribute Prediction The goal of the pairwise attribute
prediction task is to determine which font has a higher attribute
score between two font options represented as font images (Fig-
ure 5(a)). We first evaluate this task for in-domain attributes.In total,
we generated 198,400 pairwise comparison subtasks for evaluating
this task. Each comparison was assessed by seven people, and we
computed the accuracy through respective comparisons. As shown
in Table 2(a), FontCLIP achieves better performance compared
to CLIP. This suggests that the FontCLIP feature is more distin-
guishable regarding different attributes. Moreover, despite taking
only a font image as input, FontCLIP achieves comparable perfor-
mance to the best model that uses typographical features proposed
by [OLAH14]. This result suggests that FontCLIP’s image-based
typographical features extracted only from target glyphs (i.e., not
glyphs of all Roman characters) are representative and achieve sim-
ilar retrieval performance as vector-based typographical features
extracted from all Roman characters.

Furthermore, we conducted quantitative evaluations to assess
FontCLIP’s generalization capabilities on out-of-domain attributes
and different languages. Out-of-domain attributes cannot be han-
dled by the methods in [OLAH14] because their models need to
be trained in an attribute-specific manner. In addition, their models
use typographical features that are specifically designed for Roman
characters. For the evaluations, we additionally collected pairwise
attribute rating data for 50 CJK fonts with three participants re-
cruited from our university. The collected dataset contains ratings
for 5 in-domain attributes and 3 out-of-domain attributes specifically
used for describing CJK fonts, including “traditional”, “robust”, and
“Japanese style”. In Table 2(c), we show the results of the attribute
prediction task performed on CJK fonts. It can be observed that
FontCLIP outperforms CLIP on both in-domain and out-of-domain
attributes in this task, especially on out-of-domain attributes.

Pairwise Similarity Prediction The pairwise similarity prediction
task involves selecting the font that is more similar to a given ref-
erence font image out of two font images (Figure 5(b)). This task
serves as a means to assess whether the distances in the FontCLIP
latent space accurately reflect the perceptual similarity between
fonts. In total, we generated 35,387 comparisons for this task. Each
pairwise comparison was voted by 10 to 15 individuals, and we com-
puted the accuracy through respective comparisons. For the analysis,
we excluded 52 comparisons with tie votes. As shown in Table 2(b),
similar to the pairwise attribute prediction task, FontCLIP obtains
better performance compared to CLIP and achieves comparable
performance to the best model that uses vector-based typographi-
cal features extracted from all Roman characters [OLAH14]. The
results of both tasks indicate that FontCLIP’s image-based typo-
graphical features perform similarly to its vector-based counterpart
without requiring vector-based font files for all Roman characters,
thus significantly reducing the efforts of retrieving new fonts.

Cross-Lingual Pairwise Similarity Prediction Task We conduct
two pairwise similarity prediction tasks to assess the cross-lingual
retrieval ability of different methods, As shown in Figure 6, the
first task is called “Roman-to-CJK”, which involves selecting the
CJK font that is more similar to a given Roman font. The second
task is “CJK-to-Roman”, which involves selecting the Roman font
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Reference Font Font A Font B

Reference Font Font A Font B

(a) Roman-to-CJK

(b) CJK-to-Roman

Figure 6: Cross-Lingual Pairwise Similarity Prediction. (a) For the
“Roman-to-CJK” task, we use a classifier to determine which CJK
font is more similar to a reference Roman font between two CJK
font options. (b) Conversely, for the “CJK-to-Roman” task, we use
a classifier to determine which Roman font is more similar to a
reference CJK font between two Roman font options. In both tasks,
we compare the results obtained using the classifiers with human
judgments, and calculate the prediction accuracy as the performance
metric.

Model Roman-to-CJK ↑ CJK-to-Roman ↑

CLIP 57.4% 50.0%
FontCLIP 67.2% 62.6%

Table 3: For both cross-lingual pairwise similarity tasks, FontCLIP
performed better than CLIP, suggesting that FontCLIP’s prediction
results are closer to human rating results.

that is more similar to the query CJK font. To evaluate these two
tasks quantitatively, we collected 280 fonts that were not part of
the training dataset. In total, we generated 100 pairwise comparison
subtasks for “Roman-to-CJK” and “CJK-to-Roman” tasks and re-
cruited five participants to rate these comparisons. In Table 3, we
show the results for both “Roman-to-CJK” and “CJK-to-Roman”
tasks. We can observe that FontCLIP’s predictions are better aligned
with human ratings compared to CLIP’s predictions. This suggests
that despite being finetuned solely on the Roman character dataset,
the FontCLIP model can still learn general typographical features
that achieve better cross-lingual font retrieval. We also observed that
FontCLIP’s performance of “Roman-to-CJK” was better than its
“CJK-to-Roman” counterpart, which is in line with our expectation
given that the FontCLIP model was trained only on the Roman
character dataset.

6.2. Qualitative Evaluation

In our qualitative evaluation, we collected 1,169 Roman fonts and
293 CJK fonts in total. For each font, we generate its font image
using the method described in Section 4.1.2 and extract its visual
feature using FontCLIP visual encoder EI . We denote the final font
feature databases for Roman and for CJK as ΩRoman and ΩCJK.

Multilingual Font Retrieval First, we demonstrate FontCLIP’s
unprecedented generalization capability by showing multilingual
font retrieval results using a combination of attributes and image
inputs. Our goal aligns with [KdM20], where we aim to retrieve
results that preserve the style of input font image while incorporating
the desired attributes. Specifically, given a query font image Iquery
and a set of desired attributes A = {a1,a2, ...,aN}, we obtain the
embedding vector of the desired font edesired using the following
formulation:

edesired = EI(Iquery)+wET (T ), (5)

where EI and ET is the image and text encoder of FontCLIP, T is
a text prompt containing all desired attribute A, and w ∈ [0,1] is a
weight that controls the balance between preserving the original let-
ter styles and incorporating the styles of the desired attributes. With
the embedding vector edesired, we obtain the top-K retrieved results
by choosing the K closest fonts to edesired in the corresponding font
feature database (ΩRoman or ΩCJK).

In Figure 7, we compared the retrieved results obtained using
FontCLIP and CLIP in different languages, considering both in-
domain and out-of-domain attributes. In Figure 7, we found that
the retrieved results using FontCLIP effectively incorporate the
desired attributes while preserving the original style. For example,
in Figure 7(a), more retrieved results are with serifs for all languages
by using the FontCLIP feature than that of CLIP; in Figure 7(b),
for out-of-domain attribute “traditional”, the retrieved results by
FontClip also better align with the human perception than that of
CLIP. Besides, the CLIP latent space fails to interpret the “not”
prompt, resulting in thicker retrieved results compared to the results
obtained by the FontCLIP feature (Figure 7(a)).

Cross-Lingual Font Retrieval Next, we demonstrate the cross-
lingual font retrieval results using FontCLIP. Our goal is to retrieve
fonts that have a similar style to the query font image Iquery from
other languages. To begin with, we calculate the visual feature of the
query font image Iquery as EI(Iquery). Following this, we search for
the k nearest fonts to the visual feature in the font feature dataset of
other languages. In the “Roman-to-CJK” results shown in Figure 8,
we have found that the FontCLIP feature is better at retrieving CJK
fonts that are more similar to the query Roman fonts, compared to
the CLIP feature (Figure 8(a)). Meanwhile, we observed that the
“CJK-to-Roman” retrieved results of CLIP deviate excessively from
the style of the query font image (Figure 8(b)).

7. Dual-Modal Multilingual Vector Font Optimization

In this section, we describe another application of FontCLIP: an
optimization-based method that modifies the letter shapes in vector
fonts based either on text prompts or on image inputs in multiple lan-
guages. Figure 9 shows the overview of our vector font optimization
method. Guided by the FontCLIP latent space, our optimization-
based method supports both language-driven and image-driven font
optimization in multiple languages.

The input to our method is a letter l from an existing font in vector
format. Following [IVH∗23], we represent l as a set of k control
points, P = {p j ∈ R2}k

j=1, describing it’s outline. P is obtained by a
subdivision, which provides sufficient expressiveness even for letters
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(a) Top-5 retrieval results for in-domain attributes: “serif, not thin” (b) Top-5 retrieval results for out-of-domain attributes: “traditional” 
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Figure 7: The results of dual-modal font retrieval using FontCLIP latent space and CLIP latent space. The goal of this multi-modal retrieval is
to preserve the style of input font image query (text with frame) while incorporating the desired attributes. (a) We show the top-5 retrieval
results with in-domain attributes for Roman, Chinese, and Japanese characters. By using the FontCLIP feature, we can retrieve more fonts with
serif for multiple languages. (b) We show the top-5 retrieval results with out-of-domain attributes for Roman, Chinese, and Japanese characters.

FontCLIP

CLIP
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Figure 8: Cross-lingual font retrieval results using FontCLIP latent space and CLIP latent space. The goal of this cross-lingual font retrieval is
to find fonts in other languages that match the style of the input font image query (text with frame). (a) We show the top-5 retrieval results for
“Roman-to-CJK”. (b) We show the top-5 retrieval results for “CJK-to-Roman”.
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Figure 9: An overview of our multi-modal vector font optimization.
Given an input letter l (“A” in this example) represented as a set of
outline control points P, and either a language-driven descriptive
prompt Tuser (a), or a visual-driven reference font image Iuser (b), we
iteratively optimize the new positions of P̂ creating the optimized
letter shape l̂. Inspired by [IVH∗23], we first rasterize the deformed
letter l̂ by a differentiable rasterizer (DiffVG). To guide the opti-
mization, we use a language loss Llanguage in (a) language-driven
optimization, or a visual loss Lvisual in (b) visual-driven optimization
to ensure l̂ aligns with desired attributes indicated by the descrip-
tive prompt or the reference font image. Moreover, our objective
function includes the tone preservation loss Ltone and an ACAP
deformation loss Lacap similar to [IVH∗23]. Black and red dashed
arrows indicate forward and backward computation, respectively.

with few control points. The output of our pipeline is the same set
of control points P̂ = {p̂ j}k

j=1 in different positions that represents
the outline of the manipulated letter l̂. The users define their goal
either by providing a text prompt Tuser of attributes or a reference

font image Iuser as additional input that drives the optimization (see
Figure 9).

7.1. Language-Driven Font Optimization

Our specific goal here is to manipulate the original letter l into Î by
aligning it with desired attributes while preserving the original styles.
To preserve the original styles of l, we begin by calculating similarity
scores between its original shape R(P) and the 37 attributes. We
then select the top-M (we set M = 2) attributes with the highest
similarity scores as the attributes to be preserved. The user-specified
prompt Tuser is then combined with these M preserved attributes to
form the final compound descriptive prompt Tfinal. To encourage
the manipulated letter l̂ to align with Tfinal, we define the following
function using the FontCLIP visual encoder EI and text encoder ET :

Llanguage(P̂,Tfinal) = dist(EI(R(P̂)),ET (Tfinal)), (6)

where dist(x,y) = 1.0− x·y
∥x∥∥y∥ denotes the cosine distance between

x and y, and R is the differentiable rasterizer [LLGRK20]. However,
we have noticed that using Llanguage alone can result in significant
deviations from the initial letter geometry. Inspired by [IVH∗23],
we incorporate the ACAP deformation loss and tone preservation
loss into our final objective function. The ACAP deformation loss
minimizes the deviation of the final letter shape from its initial shape,
while the tone preservation loss aims to preserve the font’s style and
letter structure. For detailed definitions of both losses, please refer
to [IVH∗23]. The objective function is defined as

LLD = Llanguage +wacapLacap +wtoneLtone, (7)
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“serif font” “not serif font”
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Figure 10: Visualization of the vector font optimization steps of the language-driven Roman and Chinese character optimization using
FontCLIP. We compared the results obtained by Word-As-Image [IVH∗23] and our method. Our method better captures and reconstructs each
character’s typographical features, including features such as serif.

(a) Input font (b) SDS + (d) Our
 

+ 

: " This is an italic, formal, legible font".

(c) Our + 

T�inal

T�inal T�inalTuser

Figure 11: Ablation study on the language-driven font optimization.
Given (a) an input font, we compare the results obtained by (b)
replacing Llanguage into SDS loss, (c) our method using only Tuser,
and (d) our method using Tfinal. (The user specificed attributes are
shown in blue and the attributes to be preserved are shown in red.)

where we set wacap = 0.2 and wtone = 0.2 throughout all examples
shown in this paper. In Figure 1(b), we can observe the iterative
optimization steps where the Chinese character gradually becomes
thinner while maintaining its formal and legible appearance. In Fig-
ure 10, we compare the results obtained by our method and Word-As-
Image [IVH∗23] on Roman and Chinese characters. We can observe
that our optimization method using FontCLIP feature captures and
reconstructs typographical features better, even for features such as
serif.

Ablation Study In Figure 11, we present a comparison of various
formulations. This includes replacing the language loss Llanguage
with the Stable Diffusion (SDS) loss, which was used in [IVH∗23],
and solely using Tuser in Llanguage (i.e., excluding the attributes we
aim to preserve). As can be seen, the result using SDS loss did
not exhibit the desired attributes used in the text prompt Tfinal and
severely deviated from the original letter shape. The result using
Tuser reflects the desired attribute (“italic”) but fails to preserve the
original styles of the input font.

                                                     

 

       

Letter

30 100 500 1000 3000 5000

step

step

30 100 500 1000 1500 2000

Reference 
font image Optimization steps

Figure 12: Visualization of the optimization steps of the cross-
lingual image-driven Roman and Chinese character optimization.

7.2. Image-Driven Font Optimization

When a reference font image Iuser is given, image-driven font opti-
mization manipulates l into l̂ while ensuring that l̂ reflects the visual
typographic attributes present in Iuser. To achieve this, we define the
following function using the FontCLIP visual encoder EI and text
encoder ET :

Limage(P̂, Iuser) = dist(EI(R(P̂)),EI(Iuser)), (8)

and the overall objective function for image-driven font manipula-
tion is defined as:

LV D = Limage +wacapLacap +wtoneLtone, (9)

where we set wacap = 0.2 and wtone = 0.2. In Figure 12, we present
cross-lingual optimization results on both Roman and CJK charac-
ters. We can observe the iteratiove optimization steps that gradually
align the styles of the input Roman and Japanese letters with the
style in the reference font images even from other languages. Finally,
in Figure 13, we demonstrate the effectiveness of our font optimiza-
tion method using a reference font image captured in real-world
conditions. We extracted the letters from the captured image and
used them as Iuser to drive the optimization for the provided letters.
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(a) captured reference font image

(b) extracted letters (c) letter (d) optimized letter

Figure 13: (a) Given a reference font image captured in real-world,
our optimization method uses (b) the extracted letters to manipulate
(c) the input letters. (d) The optimized letters exhibits a similar style
to the fonts in the captured image.

(a) Input font (b) Optimized result (c) Input font (d) Optimized result

Figure 14: Our optimization method faces challenges in handling
complex structures such as crossing and rounded strokes.

8. Limitations and Future Work

Attribute Entanglement Currently, FontCLIP latent space exhibits
entanglement between different attributes. As shown in Figure 11(c),
the optimized letter exhibits characteristics from attributes that are
not specificed by the user. As a result, our method need to identify
and preserve the most representative attributes of the font during
language-driven font optimization (Figure 11(d)). In the future, a po-
tential solution would be to explore contrastive finetuning, utilizing
fonts with similar attribute scores but differing in only one attribute.

Vector Font Optimization on Complex Typographic Structures
While our current character shape optimization method shows
promising results, it faces challenges in handling complex typo-
graphic structures, such as crossing and rounded strokes (Figure 14).
Future research could improve our optimization method by inves-
tigating more appropriate font parameterizations [HHH10] and in-
corporating more typographic-specific constraints. Nonetheless, our
results validate the concept and suggest that our FontCLIP could be
a foundation of future font optimization methods.

Generalization Enhancement Currently, FontCLIP is specifically
finetuned using a dataset that exclusively contains Roman alphabet
characters and commonly associated attributes. However, there is a
possibility that cultural differences might affect how letter shapes
are linked to attributes. To alleviate this issue, we plan to explore
few-shot learning techniques for out-of-domain languages, which
involve collecting small-scale datasets using the data collection
process described in [OLAH14].

9. Conclusion

In this paper, we introduced FontCLIP – a model that bridges the
semantic understanding of a large vision-language model with typo-
graphical knowledge. Our experiments demonstrated FontCLIP’s
two unprecedented generalization abilities. First, FontCLIP can
generalize to multiple languages despite being finetuned only on
a Roman character dataset. This ability enables multilingual and
cross-lingual font retrieval and letter shape optimization. Second,
FontCLIP can recognize out-of-domain semantic attributes, facilitat-
ing more diverse attribute-based font retrieval and letter shape opti-
mization. Finally, FontCLIP’s dual-modality allows unprecedented
multilingual font applications through a unified space without ex-
tracting typographical features through vector-based font files. In
summary, we believe FontCLIP can greatly simplify the process of
obtaining desired fonts during the design process.
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