
Pacific Graphics 2023
R. Chaine, Z. Deng, and M. H. Kim
(Guest Editors)

COMPUTER GRAPHICS forum
Volume 42 (2023), Number 7

Data-guided Authoring of Procedural Models of Shapes
Supplementary Material

Ishtiaque Hossain1 I-Chao Shen2 Takeo Igarashi2 Oliver van Kaick1

1 Carleton University, Canada
2 The University of Tokyo, Japan

1. Additional result of our method on 3D shapes

Since the procedural model used in our paper for the main results
on 3D shapes is too complex for illustration purposes, in this sec-
tion, we show an example of a complete result of our method ob-
tained with a simplified procedural model. The procedural model
used here combines primitive shapes such as cubes and cylinders
to create tables. The primitive shapes are created with the Blender
API for Python. Figure 1 shows the cube and the cylinder func-
tions, which are parameterized by the location and the scale of the
corresponding primitive.

For the set of reference shapes, we selected 20 shapes from the
table category in ShapeNet. Figure 2 shows the selected shapes.
The figure also shows how the clustering step of our method col-
lects similar-looking shapes into groups for the user to inspect.
Each group is assigned a different color. In this example, after
looking at the groups in Figure 2, the user decided to write an ini-
tial procedural model that creates a rectangular table-top and four
straight legs, which can be created using cubes at various locations
and scales. Figure 3 shows the initial procedural model.

Figure 4 shows the result of one iteration of our method af-
ter using the initial procedural model written by the user. We see
how our method identifies the compatible shapes, i.e. the refer-
ence shapes that can be replicated well using the initial procedural
model, as well as the incompatible shapes. Good replications are
colored green and other approximations are colored yellow. Again,
similar shapes are grouped together and looking at these groups,
the user decided to add an additional parameter and code to cre-
ate rectangular or rounded table-tops. Figure 5 shows the second
version of the procedural model after this change.

Figure 6 shows the second iteration of our method. While in-
specting the groups of incompatible shapes, the user noticed that
some tables have a support structure among the four legs and de-
cided to introduce another parameter and code to specify the type of
leg to be constructed. Figure 7 shows the revised procedural model
that takes this change into account.

The next iteration of our method is shown in Figure 8. Among
the groups of incompatible shapes, there are tables that have only
one leg with a rounded base. The user then included this type of

leg into the model and revised the procedural model accordingly.
Figure 9 shows the fourth version of the procedural model.

Figure 10 shows the next iteration, where the only remaining
incompatible shapes have another type of leg. Then, the user mod-
ifies the procedural model to accommodate the additional leg type.
Figure 11 shows the fifth version of the procedural model.

Figure 12 shows the final iteration of our method, where all the
reference shapes are replicated well. At this point, the procedural
model has grown in both complexity and its ability to generate vari-
ations of tables similar to the reference shapes.

© 2023 The Authors. Computer Graphics Forum published by Eurographics - The European Asso-
ciation for Computer Graphics and John Wiley & Sons Ltd.
This is an open access article under the terms of the Creative Commons Attribution-NonCommercial-
NoDerivs License, which permits use and distribution in any medium, provided the original work is
properly cited, the use is non-commercial and no modifications or adaptations are made.

https://orcid.org/0000-0002-8153-0809
https://orcid.org/0000-0003-4201-3793
https://orcid.org/0000-0002-5495-6441
https://orcid.org/0000-0001-9869-6832


2 of 8 I. Hossain, I. Shen, T. Igarashi, and O. van Kaick / Data-guided Authoring of Procedural Models of Shapes

1 import bpy
2

3

4 def cube(location=(0.0, 0.0, 0.0), scale=(1.0, 1.0, 1.0)):
5 bpy.ops.mesh.primitive_cube_add(size=1.0, location=location, scale=scale)
6

7

8 def cylinder(location=(0.0, 0.0, 0.0), scale=(1.0, 1.0, 1.0)):
9 bpy.ops.mesh.primitive_cylinder_add(radius=0.5, depth=1.0, location=location, scale=scale)

Figure 1: Methods for creating cube and cylinder primitives.

Figure 2: Initial grouping performed automatically by our method on selected shapes from ShapeNet.

© 2023 The Authors.
Computer Graphics Forum published by Eurographics and John Wiley & Sons Ltd.



I. Hossain, I. Shen, T. Igarashi, and O. van Kaick / Data-guided Authoring of Procedural Models of Shapes 3 of 8

1 def create_table(height, breadth, top_thickness, leg_thickness):
2 h, b, t_th, l_th = height, breadth, height * top_thickness, breadth * leg_thickness
3 # create table-top
4 top_loc, top_scl = (0.0, 0.0, (h - t_th) / 2.0), (1.0, b, t_th)
5 cube(location=top_loc, scale=top_scl)
6 leg_scl = (l_th, l_th, h)
7 # create four legs
8 x = (1.0 - l_th) / 2.0
9 y = (b - l_th) / 2.0

10 leg_locs = [(x, y, 0.0), (x, -y, 0.0), (-x, y, 0.0), (-x, -y, 0.0)]
11 for leg_loc in leg_locs:
12 cube(location=leg_loc, scale=leg_scl)

Figure 3: Initial procedural model.

Figure 4: Replication result using the initial version of the procedural model.

© 2023 The Authors.
Computer Graphics Forum published by Eurographics and John Wiley & Sons Ltd.



4 of 8 I. Hossain, I. Shen, T. Igarashi, and O. van Kaick / Data-guided Authoring of Procedural Models of Shapes

1 def create_table(height, breadth, top_thickness, leg_thickness, roundtop):
2 h, b, t_th, l_th = height, breadth, height * top_thickness, breadth * leg_thickness
3 rt = roundtop
4 # create table-top
5 top_loc, top_scl = (0.0, 0.0, (h - t_th) / 2.0), (1.0, b, t_th)
6 if rt:
7 cylinder(location=top_loc, scale=top_scl)
8 else:
9 cube(location=top_loc, scale=top_scl)

10 leg_scl = (l_th, l_th, h)
11 # create four legs
12 a = 1.41 if rt else 1.0
13 x = (1.0 - a * l_th) / (2 * a)
14 y = (b - a * l_th) / (2 * a)
15 leg_locs = [(x, y, 0.0), (x, -y, 0.0), (-x, y, 0.0), (-x, -y, 0.0)]
16 for leg_loc in leg_locs:
17 cube(location=leg_loc, scale=leg_scl)

Figure 5: Second version of the procedural model.

Figure 6: Replication result using the second version of the procedural model.

© 2023 The Authors.
Computer Graphics Forum published by Eurographics and John Wiley & Sons Ltd.



I. Hossain, I. Shen, T. Igarashi, and O. van Kaick / Data-guided Authoring of Procedural Models of Shapes 5 of 8

1 def create_table(height, breadth, top_thickness, leg_thickness, roundtop, leg_type):
2 h, b, t_th, l_th = height, breadth, height * top_thickness, breadth * leg_thickness
3 rt, l_tp = roundtop, leg_type
4 # create table-top
5 top_loc, top_scl = (0.0, 0.0, (h - t_th) / 2.0), (1.0, b, t_th)
6 if rt:
7 cylinder(location=top_loc, scale=top_scl)
8 else:
9 cube(location=top_loc, scale=top_scl)

10 leg_scl = (l_th, l_th, h)
11 # create four legs
12 a = 1.41 if rt else 1.0
13 x = (1.0 - a * l_th) / (2 * a)
14 y = (b - a * l_th) / (2 * a)
15 leg_locs = [(x, y, 0.0), (x, -y, 0.0), (-x, y, 0.0), (-x, -y, 0.0)]
16 for leg_loc in leg_locs:
17 cube(location=leg_loc, scale=leg_scl)
18 # create support between legs
19 if l_tp == ’support’:
20 if rt:
21 leg_sprt_scl = (l_th, b / a, l_th)
22 else:
23 leg_sprt_scl = (l_th, b, l_th)
24 cube(location=(x, 0.0, -h / 3.0), scale=leg_sprt_scl)
25 cube(location=(-x, 0.0, -h / 3.0), scale=leg_sprt_scl)
26 cube(location=(0.0, 0.0, -h / 3.0), scale=((1.0 - a * l_th) / a, l_th, l_th))

Figure 7: Third version of the procedural model.

Figure 8: Replication result using the third version of the procedural model.

© 2023 The Authors.
Computer Graphics Forum published by Eurographics and John Wiley & Sons Ltd.



6 of 8 I. Hossain, I. Shen, T. Igarashi, and O. van Kaick / Data-guided Authoring of Procedural Models of Shapes

1 def create_table(height, breadth, top_thickness, leg_thickness, roundtop, leg_type):
2 h, b, t_th, l_th = height, breadth, height * top_thickness, breadth * leg_thickness
3 rt, l_tp = roundtop, leg_type
4 # create table-top
5 top_loc, top_scl = (0.0, 0.0, (h - t_th) / 2.0), (1.0, b, t_th)
6 if rt:
7 cylinder(location=top_loc, scale=top_scl)
8 else:
9 cube(location=top_loc, scale=top_scl)

10 leg_scl = (l_th, l_th, h)
11 if l_tp == ’round’:
12 # create rounded leg
13 cylinder(location=(0.0, 0.0, 0.0), scale=leg_scl)
14 cylinder(location=(0.0, 0.0, -(19.0 * h) / 40.0), scale=(0.5, 0.5, h / 20.0))
15 else:
16 # create four legs
17 a = 1.41 if rt else 1.0
18 x = (1.0 - a * l_th) / (2 * a)
19 y = (b - a * l_th) / (2 * a)
20 leg_locs = [(x, y, 0.0), (x, -y, 0.0), (-x, y, 0.0), (-x, -y, 0.0)]
21 for leg_loc in leg_locs:
22 cube(location=leg_loc, scale=leg_scl)
23 # create support between legs
24 if l_tp == ’support’:
25 if rt:
26 leg_sprt_scl = (l_th, b / a, l_th)
27 else:
28 leg_sprt_scl = (l_th, b, l_th)
29 cube(location=(x, 0.0, -h / 3.0), scale=leg_sprt_scl)
30 cube(location=(-x, 0.0, -h / 3.0), scale=leg_sprt_scl)
31 cube(location=(0.0, 0.0, -h / 3.0), scale=((1.0 - a * l_th) / a, l_th, l_th))

Figure 9: Fourth version of the procedural model.

Figure 10: Replication result using the fourth version of the procedural model.

© 2023 The Authors.
Computer Graphics Forum published by Eurographics and John Wiley & Sons Ltd.



I. Hossain, I. Shen, T. Igarashi, and O. van Kaick / Data-guided Authoring of Procedural Models of Shapes 7 of 8

1 def create_table(height, breadth, top_thickness, leg_thickness, roundtop, leg_type):
2 h, b, t_th, l_th = height, breadth, height * top_thickness, breadth * leg_thickness
3 rt, l_tp = roundtop, leg_type
4 # create table-top
5 top_loc, top_scl = (0.0, 0.0, (h - t_th) / 2.0), (1.0, b, t_th)
6 if rt:
7 cylinder(location=top_loc, scale=top_scl)
8 else:
9 cube(location=top_loc, scale=top_scl)

10 leg_scl = (l_th, l_th, h)
11 if l_tp == ’round’:
12 # create rounded leg
13 cylinder(location=(0.0, 0.0, 0.0), scale=leg_scl)
14 cylinder(location=(0.0, 0.0, -(19.0 * h) / 40.0), scale=(0.5, 0.5, h / 20.0))
15 elif l_tp == ’split’:
16 # create split legs
17 for x in [0.5 - l_th / 2.0, l_th / 2.0 - 0.5]:
18 cube(location=(x, 0.0, 0.0), scale=(l_th, l_th, h))
19 cube(location=(x, 0.0, (l_th - h) / 2.0), scale=(l_th, b, l_th))
20 else:
21 # create four legs
22 a = 1.41 if rt else 1.0
23 x = (1.0 - a * l_th) / (2 * a)
24 y = (b - a * l_th) / (2 * a)
25 leg_locs = [(x, y, 0.0), (x, -y, 0.0), (-x, y, 0.0), (-x, -y, 0.0)]
26 for leg_loc in leg_locs:
27 cube(location=leg_loc, scale=leg_scl)
28 # create support between legs
29 if l_tp == ’support’:
30 if rt:
31 leg_sprt_scl = (l_th, b / a, l_th)
32 else:
33 leg_sprt_scl = (l_th, b, l_th)
34 cube(location=(x, 0.0, -h / 3.0), scale=leg_sprt_scl)
35 cube(location=(-x, 0.0, -h / 3.0), scale=leg_sprt_scl)
36 cube(location=(0.0, 0.0, -h / 3.0), scale=((1.0 - a * l_th) / a, l_th, l_th))

Figure 11: Fifth version of the procedural model.

Figure 12: Replication result using the fifth version of the procedural model.

© 2023 The Authors.
Computer Graphics Forum published by Eurographics and John Wiley & Sons Ltd.


