
JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 1

ClipGen: A Deep Generative Model for Clipart
Vectorization and Synthesis

I-Chao Shen and Bing-Yu Chen, Senior Fellow, IEEE

Abstract—This paper presents a novel deep learning-based approach for automatically vectorizing and synthesizing the clipart of
man-made objects. Given a raster clipart image and its corresponding object category (e.g., airplanes), the proposed method
sequentially generates new layers, each of which is composed of a new closed path filled with a single color. The final result is obtained
by compositing all layers together into a vector clipart image that falls into the target category. The proposed approach is based on an
iterative generative model that (i) decides whether to continue synthesizing a new layer and (ii) determines the geometry and
appearance of the new layer. We formulated a joint loss function for training our generative model, including the shape similarity,
symmetry, and local curve smoothness losses, as well as vector graphics rendering accuracy loss for synthesizing clipart recognizable
by humans. We also introduced a collection of man-made object clipart, ClipNet, which is composed of closed-path layers, and two
designed preprocessing tasks to clean up and enrich the original raw clipart. To validate the proposed approach, we conducted several
experiments and demonstrated its ability to vectorize and synthesize various clipart categories. We envision that our generative model
can facilitate efficient and intuitive clipart designs for novice users and graphic designers.

Index Terms—ClipGen, ClipNet, clipart, vector graphics,deep learning, deep generative model

F

1 INTRODUCTION

Vector clipart is widely used in graphic design to express
concepts or illustrate daily life objects compactly. It has
several advantages over raster images, such as (i) better
geometric editability benefit from separate geometric paths
and (ii) resolution independence, which significantly re-
duces the burden of redesigning the same concept or shape
whenever a new resolution support is required. However,
designing vector clipart from scratch or editing existing
clipart obtained from online repositories (e.g., Openclipart1)
is challenging for amateur users who lack the skill of using
vector graphics editing software, such as Adobe Illustrator [1]
and Inkscape [2]. To address this problem, an automated
method to synthesize clipart for amateur users is required.
Deep generative image modeling techniques, which enable
the automatic generation of high-quality raster images for
human faces, animals, and natural objects, are being rapidly
developed [3]. However, their synthesized results are raster
images that lack the structural editability feature available
in vector clipart.

Therefore, this paper focuses on generating vector clipart
to support higher-level structural editing operations. Our
goal was to train a deep generative model that can simulate
the design process of vector clipart. In particular, we focused
on designing a generative model to represent and generate
clipart conditioned on a target raster image and the desired
object category sequentially. The proposed method is based
on two essential clipart characteristics. First, the vector
clipart is defined to comprise separate layers containing

• I-C. Shen, and B-Y. Chen are with with National Taiwan University.
E-mail: jdilyshen@gmail.com, robin@ntu.edu.tw

Manuscript received April 19, 2005; revised August 26, 2015.
1. http://clipart-library.com/openclipart.html

a single closed path and its filled color. Second, the cli-
part geometries exhibit strong symmetry and simplicity for
better editability. On the basis of these two characteristics,
we propose an iterative clipart synthesis framework that
synthesizes a layer with a predicted single closed path and
its filled color in one step. Finally, we composite all the
synthesized layers to obtain the final result (please refer to
the examples presented in Figs. 18 and 19).

To describe the composited result at the current step, we
extract several visual representations, including the types of
existing curves, their depth ordering, the location of their
control points, and the rendered image. We then use con-
volutional neural networks (CNNs) to recognize and extract
the essential features of these visual representations. The ex-
tracted features capture patterns and relationships between
curves, which provide a useful context for deciding which
curve to synthesize next. On the basis of previous works on
3D shapes [4] and 3D scene synthesis [5], we model an iter-
ative synthesis process using two separate modules. Given
the visual representations of the current synthesized result,
the first module (i) decides whether to synthesize a new
layer and (ii) determines the centroid location probability of
the next closed path, given the visual representations of the
current synthesized result. The second module is a critical
component of our iterative synthesis framework because
it decides the geometry and the appearance of the next
layer. We use recurrent neural networks (RNNs) to predict
the sequence of control points of the connected curves
that forms a closed path. In addition, we design several
loss functions, including shape loss, symmetry loss, area
loss, local smoothness loss, and simplicity losses, to aid the
network in synthesizing the desired curves. We also adopt
a rendering accuracy loss based on a novel differentiable
vector graphics rendering technique [6], which encourages
the network to refine the predicted geometry and predict

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 2

the appropriate filling color simultaneously.
To facilitate our clipart generative model training, we in-

troduce a clipart dataset called ClipNet, which contains 2000
clipart classified into ten categories of man-made objects.
This dataset focuses on vector graphics representation and
thus complements the previous image [7] and 3D shape [8]
datasets. The characteristics of ClipNet are analyzed, and
two annotation tasks are designed to extract clean shapes
from the raw clipart collected from online repositories.
ClipNet can be used in several potential applications, such as
clipart generative and recognition models as well as multi-
view clipart synthesis.

We applied the proposed method to several applications,
such as vectorizing existing raster clipart, synthesizing vari-
ous categories of novel clipart, and synthesizing clipart that
resembles a photograph. These applications can facilitate
the clipart design process that involves the use of common
categories of man-made objects. We conducted ablation
studies to validate our method and compared the results
of our method with those of existing methods.

2 RELATED WORK

2.1 Image vectorization and clipart synthesis

The vectorization of raster images is a long-standing re-
search problem. Commercial products [1], [9] enable robust
natural image vectorization that can simultaneously address
both image segmentation and curve (segment boundary)
fitting problems. Many studies have been conducted on
image segmentation part [10], [11], [12], [13], [14] and curve
fitting part [15]. Favreau et al. [10] focused on vectorizing
photographs in cliparts with easily editable geometries and
representing the raster image accurately. Kim et al. [14] used
a neural network to predict a probability map of pixel-
path relationships and formulated a global MRF problem to
segment an input image into different paths. Liu et al. [16]
designed an interactive system to synthesize novel clipart
by remixing the clipart existing in a large repository. By
contrast, Xie et al. [17] provided interactive approaches that
allow users to adjust region boundary properties manually.
Unlike the approaches used in the aforementioned studies,
the approach proposed in the current study can synthesize
man-made object clipart without conditioning on any spe-
cific input. Moreover, the proposed approach can synthesize
filled images instead of line drawings without filled colors.

Some studies have focused on vectorizing pixel arts [18],
[19], [20]. For example, Kopf and Lischinski [19] proposed
a dedicated method focused on resolving the topological
ambiguities that occur during vectorizing pixel arts. Hosh-
yari et al. [20] has used human perceptual cues to generate a
better boundary vectorization that better matches viewers’
expectations.

2.2 Generative model

In computer graphics, the generative models for 3D models
and scenes have drawn considerable research attention.
Many assembly-based 3D modeling methods provide a
probabilistic model to infer potential components for as-
sembling under fully-automatic [4] and semi-automatic [21]
settings. Similar probabilistic modeling methods have been

used to synthesize novel 3D scenes [22] and suggest pattern
colorizations [23].

Deep generative models have gained popularity for syn-
thesizing digital content, including raster images, videos,
and audio. The most popular deep generative models in-
clude variational autoencoder (VAE) [24], which aims at
maximizing the lower bound of the data log-likelihood,
and generative adversarial network (GAN) [25], which aims
to achieve an equilibrium between the generator and the
discriminator. Many variations of the aforementioned mod-
els have been used for the unconditional and conditional
generation of images, including for image translation [26],
[27].

The progresses achieved in the raster image domain has
inspired researchers to synthesize 3D models [28], [29], 3D
scenes [5], [30], 3D abstractions [31], and 3D motions for
man-made objects [32].

Moreover, the deep generative models have facilitated
tasks such as 2D sketches [33], 2D design layouts [34], [35],
interactive annotations on 2D images [36], pixelization [37],
font exploration [38], and face image decomposition [39].
The learned latent representations of these models are useful
for creative tasks such as garment design [40] and terrain
design [41]. The latent space can be explored through pre-
defined interactions [42] or free-form interactions [43], [44]
for synthesizing images that meet the users’ requirements.

2.3 Image and shape dataset

Advances have been achieved in the recognition and gen-
erative applications of deep neural networks by using the
image, video, 3D shape, and audio datasets. In the raster
image domain, ImageNet [7] formed the foundation for this
wave of neural network revival. Later, many task-specific
datasets, such as COCO [45], CelebA [46], and DAVIS [47],
were published to support tasks such as image or video
segmentation and captioning, object detection, and face syn-
thesis. Moreover, many 3D models and scenes datasets, such
as ShapeNet [8], ModelNet [48], PartNet [49], ABC [50], and
SUNCG [51], have made the 3D deep learning in recognition
and generative applications more feasible. Datasets in the
creative domain, such as Creative Flow+ [52], provide di-
verse multi-style artistic video renderings with labeled per-
pixel metadata. OpenSketch [53], QuickDraw [33], TUBer-
lin [54], and other databases [55] provide sketches created by
professional artists with different taxonomies of line types
and viewpoints.

Inspired by ShapeNet [8], in this paper, we introduce
ClipNet, which is composed of clipart of different cate-
gories of man-made objects, such as chairs, airplanes, and
cameras. Clipart is created using vector graphics editors,
such as Adobe Illustrator [1] or Inkscape [2], and integrates
both geometry and appearance into a compact format with
simplified editability. These two characteristics distinguish
this clipart data from both raster images and 3D models.
By using ClipNet, we expect to facilitate additional future
research on data-driven vector graphics.

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 3

(a) (b)

Fig. 1: Characteristics of the clipart obtained from online
repositories: (a) some clipart contain auxiliary content, such
as clouds and motion lines, and (b) some path elements
represent shading instead of geometry.

3 CLIPNET : CLIPART COLLECTION OF MAN-
MADE OBJECTS

In this work, we introduce ClipNet to facilitate the learn-
ing process of our clipart synthesis framework. Inspired
by available large datasets, such as ImageNet [7] and
ShapeNet [8], we intend to augment WordNet’s structure by
using clipart data. Our primary goal was to compile a clipart
collection in which each clipart contains the shape of the
target category without any additional content. Currently,
ClipNet contains 2D clipart of ten categories of man-made
objects, such as chairs, tables, and airplanes. The reason
for focusing on these ten categories of the man-made object
is because they are commonly used during the animation,
slides, and other 2D content creation processes.

3.1 Data Characteristics
During the data collection process, we have observed two
crucial characteristics of clipart shared in online repositories:
i.e., auxiliary content and shading geometry.
Auxiliary content A common characteristic of the clipart
collected from online repositories is that it often contains
additional auxiliary content apart from the shape represent-
ing the target category. For example, the airplane clipart
presented in Figure 1(a) contains flow lines that indicate mo-
tions and clouds. In the following paragraph, this airplane
is considered the target shape and the remaining clipart is
considered as the auxiliary contents. The auxiliary content
was removed because our goal was to enhance the ease of
designing the vector shape of the target category, which
is the most difficult part of clipart design. As indicated in
Figure 1(a), the geometry of most of the auxiliary content
was simpler than that of the target shape; thus, this content
could be created easily with limited assistance.
Shading geometry Another characteristic of the clipart
is that it usually describes both geometry and appearance
(e.g., color and shading)in the same file. A 3D model file
usually describes the geometry only, and its appearances
are mostly defined in separate material or texture files.
However, the path elements in clipart sometimes represent
the shading, e.g., reflection; (see Figure 1(b)), which does
not directly represent the shape. Thus, we categorized the
path elements presented in the collected clipart into two
categories: the geometry path and the shading path. We

labeled a path as a shading path if removing it did not
change how people perceived a complete shape of the
original category. Then, we labeled the remaining paths
as the geometry path. For example, we labeled the two
floating path elements in Figure 1(b) as shading paths. In
this work, we focused on generating the geometry paths
that can form an object representing the target category
under any lighting conditions; thus, we intended to remove
the shading paths. In addition, we regarded the shading
geometry as the appearance part of the target shape, which
can be treated as a separate problem to be addressed in the
future.

3.2 Data Preprocessing
To obtain the target clipart without any undesired content,
we performed two preprocessing steps. First, we identified
all the auxiliary path elements and removed them from
the input clipart. Second, we identified the shading paths
of the remaining paths of the first step. We recruited five
participants and asked them to perform the following two
tasks.
Auxiliary content removal Inspired by a previously pro-
posed image segmentation annotation interface [56], we
selected to use the polygon-based method, which allows
the users to draw polygons in the region of the content-
of-interest. We first rendered the clipart into a raster image
and recorded the pixels within each closed path. For each
clipart, we asked multiple users to draw polygons on the
target shape and identified the corresponding path (see
Figure 2(a)). Because the polygons annotated by the par-
ticipants were merely used for identifying relevant closed
paths rather than representing the shape directly, the poly-
gons were not required to be accurate. For each clipart, we
included the paths identified by all the users as the target
shapes.
Shading path removal The most direct approach to remove
the shading path from the clipart is to ask users to remove it
by using a vector graphics editor, such as Adobe Illustrator
or Inkscape. However, most users are not experienced in
using such software; thus, we designed a simple annotation
process that only required them to answer yes-no questions.
We removed the i-th path for each clipart with N different
paths and rendered the remaining paths into a raster image
as i-th image. In the interface, we presented the complete
image and the i-th image side-by-side and asked the users to
identify whether the shape in i-th image was still a complete
shape of the target category (see the example pair and the
question asked in Figure 2(b)). If the user believed that the
remaining paths in the i-th image represented the target
category, we labeled the i-th path as the shading path. The
rationale behind the aforementioned task design was that
the removed path was a shading path if it did not affect
the user in perceiving the remaining paths as a complete
object of the target category. We asked the five participants
to answer the question for each path and labeled a path as a
shading path if all the users agreed that the remaining paths
represented a complete object.

The processed clipart was compiled into the ClipNet
dataset, which was used to train different modules that were
adopted in the proposed method.

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 4

Fig. 2: Two annotation tasks for data preprocessing. (a)
Auxiliary content removal: we asked users to draw polygons
over the region of the target shape. (b) Shading path removal:
we presented a pair of shapes to the user and asked them
to answer a “yes-no” question to identify the shading path.
In this example, the user answered “yes,” which indicates
that even without the removed path, the remaining shape
can still represent a complete guitar shape; therefore, the
removed path was regarded as a shading path.

(a) (b)

Fig. 3: (a) Layer representation of a vector clipart image. (b)
A multichannel image including various visual representa-
tions of the current canvas.

4 PROBLEM FORMULATION

This work aimed to synthesize clipart comprising a multi-
layer vector representation (see Figure 3(a)) conditioned on
a selected category (e.g., airplanes, chairs, or cameras) and a
target image. Each layer i contains a closed path Si, and it’s
filled RGB color φi. This assumption is commonly used for
artist-drawn clipart shared on the Internet and thus has also
been adopted by previous clipart vectorization works [10].
To render each layer, we generated a binary mask Mi (with
a value of 1 inside the closed path and 0 outside) at the
target resolution. The n-th layer of the rendered image of
this clipart can be formulated as follows:

In = In−1 · (1−Mi) + φi ·Mi. (1)

The symbol Ii represents the rendered image of the content
in layer i, and Ii represents the rendered image of the
content in layers 0 to i.

This paper focuses on learning generative models of
clipart of man-made objects. We formulated the synthesis
process as a sequential prediction problem. Our synthesis
model, whose main building blocks comprise deep neural
networks, can encode complex relationships between parts
of the clipart.

5 SYNTHESIS MODEL

Our vector clipart synthesis model has two inputs: a target
category and a target raster image, whose source depends
on the application. For example, for vectorizing an existing
vector clipart image, we can use a low-resolution raster
clipart image as the target raster image. To synthesize novel
clipart belonging to a specific category, we trained a gener-
ative model for synthesizing a novel raster clipart image as
the target image (refer to Figure 18 and 19 for examples).
We can synthesize diverse novel clipart by leveraging the
diversity of the synthesized novel raster clipart image.

Figure 4 illustrates our synthesis process. Because a
vector clipart image of a man-made object is usually com-
posed of several separate parts placed in layers, our model
synthesizes the entire clipart iteratively (i.e., synthesizes
each layer sequentially). After synthesizing the (n − 1)-
th layer, our model renders the constructed clipart (Sn−1,
where Si denotes the shapes in layers 0 to i) into rendered
clipart image (In−1) and attaches additional information to
it to form a visual representation (V (Sn−1)) (described in
Section 5.1). Let us take the visual representation as the
input. The first step is to predict whether our model should
synthesize a new layer. If the model decides to predict the
next layer, the second step of our model is to predict a
closed path, including the positions of all the control points
(including the start and end points), and the filled RGB
colors (φn). After these two steps, our model synthesizes
a new layer composed of the latest predicted path and its
filled color. We obtain the latest image of this layer (In) by
applying Eq. 1 and re-iterate the synthesis process by using
the latest synthesized clipart.

5.1 Visual representation of the canvas

Unlike a raster image, which is only described by pixel
values, vector clipart is also described by different layers,
various curves, and the relationships between curves. To ob-
tain a unified representation of the information encoded in
the clipart, we converted the aforementioned data into mul-
tiple 2D images and stacked all of them into a multichannel
image. Then, we used a deep convolutional network as the
feature extractor to describe the clipart.

The multichannel image included the following compo-
nents (see Figure 3(b)):
Rendered canvas: The rendered canvas is the rendered im-
age of the current canvas.
Curve types: We rendered different curves according to
their types.
Layer depth: We rendered each closed path according to its
layer depth.
Point positions: We highlighted the pixels that contained
the control points of the existing curves.

5.2 First step: Decision on whether to continue adding
layers?

The first step of our synthesis model is to decide whether
to continue adding new layers to the canvas. This function
takes the current canvas observations as input and outputs
(i) the probability of continually adding a new layer and
(ii) the probability map of the center location of the next

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 5

Fig. 4: The pipeline of our synthesis model. For each layer n, we take the synthesized shape until layer n − 1 and obtain
it s visual representation, including the rendered image In−1 and the curve information (through the V function in the
green box). The input of the first module of the proposed synthesis model is a visual representation of the current canvas,
chosen category (guitar in this figure), and target shape (optional). The first module decides whether to continue adding a
new layer onto the current canvas and predict the probability map of the potential path. If the model decides to add a new
layer, we use the same set of input combines the predicted probability map of the new path to predict a sequence of path
elements and its filled color. We composite the latest predicted layer with the existing layers and use them as input to the
synthesis model iteratively.

Fig. 5: The predicted probability maps of the center position
of the closed path in the next layer.

closed path. The observations of the current canvas include
the components described in the following text. The first
component is a feature extracted from the visual repre-
sentation (V) of the current canvas state. We fine-tuned a
pretrained deep convolutional network (we use ResNet-50)
as the feature extractor. The second component is the one-
hot encoding of the target category (t) to be synthesized. The
information about this category provides useful context for
the canvas; i.e., a similar path represents different meanings
under different object categories. The third component is
the count of the existing layers (same as the number of
closed paths) already synthesized on the canvas. The fourth
component is the rendered raster image of the target shape
(IT). We illustrate the observations in Figure 4.

5.2.1 Training data and process
Training data We used the ClipNet dataset to train our
model. We built a dataset with 50% positive and 50% nega-
tive examples. We created positive examples (i.e., examples
in which the “continue to add path” prediction is made by
the model) by using the following three approaches:

1) Selection of one complete clipart and the removal of the
last path from the original clipart: We generated a location

probability map by using the center location of the last
path being removed.

2) Selection of one blank clipart: We generated its corre-
sponding location probability map by using the center
location of the first path.

3) Selection of one complete clipart and the removal of a
random number of paths: We generated a location prob-
ability map by using the center location of the path with
the largest depth value (i.e., the deepest path).

In the aforementioned three approaches of generating pos-
itive examples, the synthesis order is naturally encoded
through the location probability map (because we used the
center location of the next path as the ground-truth loca-
tion probability map). By contrast, the negative examples
(i.e., examples in which “do not continue to add paths” is
predicted by the model) were developed by directly using a
complete clipart image.

In total, we create 4000 examples for training the first
module.

We trained the first module by using a fully-
convolutional encoder-decoder network (FCN [57]) to pre-
dict both parts simultaneously (refer to Figure 18 in the Sup-
plemental Material for the architecture). To train the location
probability part, we used pixel-wise cross-entropy loss. To
train the “continue synthesis part”, we used two additional
linear layers after the decoder output (i.e., the probability
map) to obtain a binary prediction. We trained this part of
the model as a binary classification problem by using the
binary cross-entropy loss. We trained this module by using
an Adam optimizer [58] for 200 epochs with a learning
rate of 0.001. During inference, this model terminated the
entire synthesis process if the predicted probability was less
than 0.5. Figure 5 shows several examples from different
categories as well as their predicted probabilities.

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 6

5.3 Second step: decision on which path to add next?

In the second step, we aimed to generate a new layer that
contained one closed path (composed of several connected
curves and an RGB color). We aimed to determine a function
F β that takes the observation of the current canvas as input
and outputs the sequential curve predictions (including the
curve type and control point positions). In this work, we
used two types of curves: a line curve and cubic Bézier
curve. The final action involved predicting an RGB color φ
that fills the closed path. We used four types of observations
in our prediction model. The first two observations were the
visual representation (V) of the current canvas and the one-
hot encoding of the target category t. The third observation
was the center location probability map Ip output in the first
step (refer to in Figure 5 for examples). The last input was
the target image IT . The generative model was formulated
as a function F β as follow:

[C1, C2, ..., CK , φ] = F β(V, t, Ip, I
T), (2)

where C1 to CK indicate the predicted curves of the closed
path, including the curve type and control point positions.

5.3.1 Network architecture

We implemented a generative function F β with a Recurrent
Neural Network (RNN) decoder. We used this architecture
because RNNs have demonstrated high accuracy in tasks
related to sequential and time-series data processing. Fig-
ure 6 presents the detail of our framework for predicting
a new path and color in the new layer. By considering
the aforementioned four observations mentioned above, the
decoder sequentially predicts the type of each path (i.e., line
(“l”), cubic Bézier curve (“c”), or end of the curve (“z”))
and its control point positions (including the start and end
points).

Visual encoder For each training example, we stacked the
visual representation (V), the center probability map (Ip),
and the target image (IT) by using Resnet50 [59] as our
visual feature extractor. The output feature vector obtained
from Resnet50 was concatenated with the one-hot target
category vector and passed to two linear layers (with 128
and 64 neurons, respectively). The output was a 64-d latent
vector (z), which was passed to the path generator to predict
a sequence of curves.
Path generator In the path generator, we first took the latent
vector z as the input and used a fully-connected layer to
predict the path’s starting position. We used Long Short-
Term Memory (LSTM) [60] as the recurrent architecture for
our sequential generator. At each time step i of the decoder
RNN, we feed the previously predicted control points, the
latent vector z, and one-hot encoding of the target object
category t and concatenated them into an input vector xi.
The outputs of each step were (i) the type of the curve and
(ii) the start point, end point, and control points. Figure 6
presents the details of the recurrent path generator.

5.3.2 Loss Function

We used the predicted path elements to construct a closed
path S′i = {C1, C2, ..., CK} for a new layer i. To train our

Fig. 6: Network architecture of the recurrent decoder. At
each step, the LSTM architecture receives the input, includ-
ing the latent vector of the current canvas (z), the previous
timestep’s output (path element), and the chosen category
(“guitar”). Then, it generates the type, start point, end point,
and control points of the new path.

generative models, we defined a loss function composed of
geometric and rendering losses as follows:

Ltotal = Lgeom + Lrender, (3)

where the geometric loss is expressed as follows:

Lgeom = (Lchm + Lmover) + ωsym(Lsym + Lcsym) (4)
+ ωsmoothLsmooth. (5)

Curve Sampling To measure the similarity between the
predicted path S′i and target path STi , we computed the
shape loss (both Lchm and Lmover), symmetry loss (Lsym),
and smoothness loss (Lsmooth) on a set of points sampled
on both paths. As illustrated in Figure 7, we used a uniform
sampling strategy on each curve C ; that is, if p is a sample
point on a curve C , its position can be represented as
follows:
• line. p = (1− t) · pi0 + t · pi1, where pi0 and pi1 are the start

and end points of the line i, respectively, and t ∈ [0, 1].
• cubic Bézier curve. p = (1− t)3 ·pi0 + t(1− t)r ·pi1 + t2(1−
t)·pi2+t3 ·pi3, where pi0 and pi3 are the start and end points,
respectively; pi1 and pi2 are the two control points of path
element i; and t ∈ [0, 1].

We sampled n sample points (n = 200 in this paper) for
the entire path Si and uniformly distributed them to each
path element (i.e., if there are five path elements in Si,
we uniformly sample n/5 sample points on each of them).
Because the sampled points were represented using the pre-
dicted control points, they were differentiable throughout
the entire learning process.
Shape Loss We used the ordered Chamfer loss (Lchm)
and Earth Mover’s distance loss (Lmover) to measure the
similarity between the predicted path S′i and the target path
STi . On the basis of the 2D sample point set PC on the
predicted path and the PT

C on the target path, we computed
the following losses:
• Ordered Chamfer loss The traditional Chamfer loss

used in [61] assumes the existence of an unordered
point set (permutation invariant); however, in this

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 7

sample compute
shape loss

symmetry loss

smoothness loss
gradientgradient

Fig. 7: Sampling on the predicted path, which enables end-
to-end training. The gradients of the sample points are
backpropagated onto the predicted control points.

work, the sampled points on the predicted path exhib-
ited well-defined ordering. To encourage the predicted
path to follow the ordering of the target path, we
defined our matching loss as follows:

Lmatch(PC ,P
T
C) = min

j∈[0,...,K−1]

K−1∑
i=0

‖pi − pT(j+i)%K‖22

(6)

Lchm(PC ,P
T
C) = Lmatch(PC ,P

T
C) + Lmatch(PT

C ,PC)
(7)

where K is the number of sample points, and all points
on a path are sampled in the same order (clockwise).

• Earth Mover’s loss The earth mover’s distance loss can
be computed as follows:

Lmover(PC ,P
T
C) = min

Φ:PC→PT
C

∑
p∈PC

‖p− Φ(p)‖22, (8)

where Φ : PC → PT
C is a bijection.

Symmetry Loss If a target path exhibits symmetry, then we
want the predicted path to preserve this symmetry property.
However, since the topology of the path is not always
guaranteed to be symmetric (i.e., the curves in a path do
not always have symmetric control points even if the sam-
ple points on the curves are symmetric). This information
is crucial because we desire to equip the predicted path
with editability. To address the requirements for editability
and symmetry, we designed two losses for symmetry loss:
sample point symmetry loss and control point symmetry
loss.
• Sample point symmetry loss We sampled a point

set p′C on the mirrored predicted path and computed
both the Chamfer loss and the earth mover’s distance
loss between the mirrored point set and the point set
sampled from the target path as follows:

Lsym(PC ,P
T
C) = Lchm(P′C ,P

T
C) + Lmover(P

′
C ,P

T
C)
(9)

• Control point symmetry loss By using the predicted
control points Q, we first created a mirrored control
points Q′ and then compute the Chamfer distance
between predicted and mirrored controlled points as
follows:

Lcsym = Lchm(Q′,Q). (10)

We computed the loss using the following control
points:

– line: Q = {pstart, pend}
– cubic Bézier curve: Q = {pstart, pcontrol1, pcontrol2, pend}

Smoothness Loss To preserve the local geometric details,
including the sharp corner and smooth part of the target
path, we expected the Laplacian coordinate [62] of the
sample point on the predicted path S′i to be the same as
that on the target path STi . We defined the smoothness loss
as follows:

Lsmooth =
∑
i

(L(pi)− L(pTi)), (11)

where pi ∈ PC and pTi ∈ PT
C , and

L(pi) = pi −
1

2
(pi+1 + pi−1) (12)

is the Laplacian coordinate defined on the polyline formed
by the sample points on the path.
Rendering Accuracy Loss To better predict the color and
refine the path geometry, we leveraged a novel differentiable
renderer for vector graphics [6]. This differentiable render-
ing loss aims to propagate the changes in the image observa-
tion to the vector graphics parameters. The vector graphics
differentiable renderer supports different SVG primitives
such as paths (with quadratic or cubic segments), lines, and
circles, and each path can have a fill color and stroke color.
In this work, we only used cubic curves and lines and filled
color for closed paths.
To illustrate the concept and the ability of this differentiable
vector graphics renderer, let us first assume we have a
curve set C with their corresponding color properties Ψ.
The rendering process can be described using a function ϕ:
I = ϕ(C,Ψ). The rendering accuracy loss can be defined as
follows:

Lrender = ‖(I − IT)‖2, (13)

where IT is the target image during training. The deter-
mination of the optimal curve parameters (C∗,Ψ∗) can be
formulated as an optimization problem as follows:

(C∗,Ψ∗) = argmin
C,Ψ

Lrender, (14)

We aimed to determine an optimal set of new positions
(C∗) and color properties (Ψ∗) of the initial curve set and
color properties so that the rendered image I matched the
target image IT . For the derivatives derived in [6], both
curve set positions and color properties are treated as con-
tinuous parameters; thus, we can optimize these parameters
together by using the gradient-based optimization method,
as indicated in Figure 8. The differentiable vector graphics
renderer is not the main contribution of this paper but was
proposed by another work [6]. The novelty of this work
lies in facilitating the clipart synthesis process by using this
differentiable renderer.

5.3.3 Training data and process
Training data To train our path generator, we leveraged
two training datasets: a category-specific dataset collected
in ClipNet and a random synthesis set, which was formed
by augmenting ClipNet with a non-category-specific path
set generated by a random closed-path generator. We syn-
thesized a random closed path by first deciding the curve

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 8

(a) (b) (c)

Fig. 8: (a) Randomly manipulation of the initial position of the control points and the initial filled color. By optimizing
Eq. 14 with the target image (c), we obtained the intermediate shape and color. Both the shape and the filled color were
gradually updated toward those of the target image.

(a) (b) (c)

1

2

3

4
5

(d)

side0

side1

Fig. 9: Random path generation process. (a) In this example,
we synthesized a closed path by using five curves. The
numbers indicate the synthesis order. (b) If symmetry was
desired, we selected a symmetry axis (the red dot line) and
picked a side that we wished to preserve. (c) We selected
“side0” of the path and mirrored the curve on this side
to generate the final path. (d) We also generated multiple
random paths with different colors as the training set.

count in the path and then determining whether this path
was symmetric. With an empty canvas, we progressively
generated a path without self-intersection. First, we ran-
domly selected a curve type (line or cubic Bézier curve)
and randomly decided the positions of all the start, end,
and control points. Then, we repeated the aforementioned
procedure and validated whether the current curve inter-
sected with (i) itself and (ii) all the generated curves. If
we considered a path as symmetric, we randomly selected
a symmetric axis, and we use this axis to separate the
generated path into two parts. We randomly selected one
of the two sides, and mirrored the path’s selected side,
and removed the unselected part. The synthesis process is
illustrated in Figure 9.
Curriculum training process Inspired by the curriculum
learning training strategy used in [63], [64], we categorized
the entire training process of our generative model into three
stages:

1) We used the paths in a random synthetic set to train the
path generator. For each target shape, only a single path
existed (i.e., the generator was only required to focus on
generating a single visible path).

2) We generated multiple paths on the canvas and used
the one on the top as the path to be generated (refer to
Figure 9(d) for an example). In this stage, we encouraged
the generator to recognize that some content in the target
shape was generated in the previous step.

3) We used the ClipNet path data to train the path generator
to predict a category-specific path.

In the first two stages, we used the data without category
information to train the generator. The aim of this action

was to encourage the generator to learn how to generate
single and multiple paths first and then learn about their
relationships conditioned on the category. We trained the
first stage for 200, 200, and 300 epochs in the first, second,
and third (final) stages, respectively. The curriculum train-
ing process was conducted to encourage the path generator
to familiarize itself with the most straightforward task first
(i.e., to generate the non-category-specific curve geometry),
to learn how to predict color, and finally to learn the corre-
lation between the generated curve and the categories.

5.4 Shape Regularization

After predicting all the layers, we regularized the synthe-
sized paths by identifying paths with similar but not iden-
tical characteristics, such as axis-aligned lines, concentric
curves, parallel lines, and closed paths with similar shapes,
and forced them to be identical (see Figure 10). Given an
identified group of a closed paths, our method progressively
enforces the regularities in the following order (similar to
[20], [65]):
Axis-aligned lines If several line segments in the closed
paths are close to the horizontal or vertical axis (i.e., the
angle between the lines and the vertical or horizontal axis
less than 10◦), we force them to be axis-aligned.
Arc-like path If the closed path is very close to a circle,
our method can fit the closest circle to replace the predicted
closed path. We detected an arc-like path by first sampling
points on the path and computed the average distance
between these sample points and the closest arc. If the
average distance is less than 0.5, we regarded this path as
an arc.
Concentric path If the shapes of several closed paths are
very close to a circle, and their centers are very close to each
other, our method can enforce them to center at the same
position. We treated two paths as co-centric if the distance
between their centers is less than 1/10 of the longest side of
one of their bounding boxes.
Parallel lines We sample line segments across different
closed paths and determine if they can be forced as parallel.
We treated lines as parallel if their angle of directions
between each other is less than 10◦.

6 RESULTS AND EVALUATIONS

6.1 Data analysis

In this paper, we introduced a new clipart dataset called
ClipNet, which currently contains 2000 clipart of man-made

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 9

(a) (b)

Fig. 10: (a) Synthesized clipart before regularization. Al-
though the predicted paths clearly represent the desired
category (i.e., a camera), several parts can be further reg-
ularized into superior clipart (i.e., the parts inside the red
rectangles). (b) Resultant clipart after applying axis-aligned
lines, concentric, parallel lines, and arc-like regularization
to improve the synthesized clipart into a more regularized
clipart.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

20.0

0

10

20

30

40

50

60

Line Cubic Arc
(a) number of paths (b) number of curves (c) curve types distribution

To
ta

l [
%

]

To
ta

l [
%

]

To
ta

l [
%

]

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

20.0

22.5

25.0

27.5

30.0

Fig. 11: Each clipart in our dataset comprises multiple closed
paths, each of which is composed of numerous curves. (a)
Distribution of the number of paths, (b) the distribution of
the number of curves of each path, and (c) the distribution
of the curve types of the entire dataset.

objects belonging to ten categories (please refer to the Sup-
plemental Material for additional information on the clipart
of each category in ClipNet. Each clipart in our dataset is
composed of multiple paths, each of which is composed of
multiple curves. To indicate the complexity of the clipart
in our dataset, some statistics are illustrated in Figure 11.
As indicated in Figure 11(a), most of the clipart contains
less than ten separate paths, and most of these paths only
contains less than eight separate curves (Figure 11(b)). The
distribution of the types of curves in the current dataset
is presented in Figure 11(c). As observed in Figure 11(c),
line and cubic Bézier curves are the two dominant types of
curves in the dataset; therefore, we modeled these two types
of curves in our work.

6.2 Implementation details

We implemented our synthesis model in PyTorch [66]. We
used a feature extractor (Resnet50 architecture [67]) and a
layernorm [68] LSTM as our recurrent decoder. We con-
ducted all the experiments on a desktop computer with an
Intel Core i7-7800 CPU (3.5GHz) and a GeForce GTX 1080
Ti GPU (11GB memory).

6.3 Ablation study

We conducted a set of experiments to validate our synthesis
model design’s efficacy and the proposed loss functions.
For the validation, we used our random path generator to
generate different training and testing datasets.

recurrent model cnn model
L2 image difference 24.622 55.331
Chamfer distance 1.11 12.69

TABLE 1: Quantitative results obtained for the test set by
using the recurrent decoder and non-recurrent CNN-based
predictor. We present the average image difference and
Chamfer distance on the test set.

6.3.1 Effect of the Recurrent Decoder
We modeled our curve predictor by using a recurrent
decoder. Two reasons existed for adopting this approach.
First, we did not know the count and the types of curves
that formed the desired path in advance. Second, even if
the curve count is known, the recurrent structure can still
provide superior results in the sequential synthesis of the
curve better because at each time step, the recurrent model
feeds the previously predicted result so that the model
can predict the next positions conditioned on the existing
predictions [69].

To validate the advantage of the recurrent model, we
conducted a restricted experiment. We used the random
path generator described in Section 5.3.3 to generate paths
with four cubic Bézier curves. This step was performed to
eliminate the first problem of the CNN architecture and
focus on the second problem (i.e., the advantage of the
recurrent architecture). We generated 10000 random paths
with random colors and rendered them into 64 × 64 raster
images. Of the 10000 generated images, 9000 formed the
training set and 1000 formed the test set. In both methods,
we used the same image encoder (Resnet50) but different
decoders. For a fair comparison, we designed a recurrent
CNN architecture. In each step, the network predicts the
current 2D position using the concatenated feature of the
extracted feature and the previous 2D position. Please find
the architecture in Figure 19 in the supplemental material).

We used a joint loss function that includes the shape,
symmetry, and smoothness losses. Figure 12(a) presents
examples of paths reconstructed using the two methods
(only the curve geometry was predicted, whereas the color
was assigned randomly during path generation.)
Quantitative metrics We evaluated the quality of the two
methods by computing the L2 image distance and Chamfer
distance. For computing the image distance, we rendered
the predicted curve and computed the image difference
between the rendered image and the input images.
For calculating the Chamfer distance, we sampled 200
points on both the input and predicted curves and then
computed the Chamfer distance between these two sets of
sample points. Table 1 lists the quality statistics, indicating
that the recurrent model performs better in terms of both
metrics.

6.3.2 Effects of symmetry loss
In the proposed method, two types of symmetry loss are
examed: sample point symmetry loss and control point sym-
metry loss. To effectively evaluate these symmetry losses
effectively, we generated 10000 random paths with symme-
try and rendered them into 64 × 64 raster images. Of the
10000 generated images, 9000 formed the training set and

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 10

(a)

(b)

(c)

input path with rendering without rendering

Fig. 12: Example results obtained in the ablation study.
w/o symmetry loss w/ symmetry loss

SP symmetry 3.46 1.21
CP symmetry 1.08 0.34

TABLE 2: Quantitative results for the predicted paths with
and without symmetry loss. In this table, we show the aver-
age value of the sample point (SP) and the control point (CP)
symmetry error for the test set. For both symmetry losses,
the paths synthesized by network training with symmetry
loss are lower.

1000 formed the test set. Figure 12(b) indicates the paths
synthesized by the models with and without the symmetry
loss.
Quantitative metrics We used the symmetry axes gener-
ated during the random path generation to compute both
loss functions: Lsym and Lcsym (we sampled 200 points on
each curve). Table 2 presents the quantitative metric results
for the predicted paths with and without symmetry loss.
The model trained with symmetry loss outperformed the
model trained without symmetry loss in maintaining the
symmetry of the predicted paths.

6.3.3 Effects of rendering accuracy loss
The rendering accuracy loss mainly aids in optimizing the
correct color of the predicted path. To evaluate the effect
of the rendering accuracy loss effectively, we compared our
complete synthesis method (with rendering accuracy loss)
with an alternative version of it called NoRender, in which
we directly predicted the RGB values by using a linear
layer with three outputs. Then, we generated 10000 random
paths with filled color and rendered them into 64 × 64
raster images. Of the 10000 generated images, 9000 formed
the training set and 1000 formed the test set. Figure 12(c)
indicates that the path synthesized without the rendering
accuracy loss could not achieve the correct color, and the
curve positions of this path were not as accurate as those of
the synthesized path with rendering accuracy loss.

ordered Chamfer Earth Mover’s Combined
average distances 1.85 3.67 1.12

TABLE 3: Average control point distances between the in-
put path and the predicted paths for three types of shape
losses (the combined shape loss achieved the smallest shape
distances).

TS1 TS2 TS3
average image difference 0.374 0.266 0.112

TABLE 4: Average image difference between the input raster
clipart and the rasterized vector clipart synthesized by our
method (the full curriculum training strategy (TS3) achieved
the smallest difference).

6.3.4 Effects of shape loss combination
We used two types of shape losses (i.e., the ordered Cham-
fer loss and earth Mover’s loss) in our loss function. We
followed the same process of evaluating the effect of each
loss by generating 10000 random paths without filled col-
ors (9000 images formed the training set and 1000 images
formed the test set). We compared three versions of shape
loss: ordered Chamfer loss only, earth Mover’s loss only, and
combined Chamfer and earth mover’s loss. Table 3 presents
the relevant quantitative results. The combined loss function
achieved the smallest geometric differences; however, the
earth Mover’s loss only provided a marginal improvement.

6.3.5 Effects of curriculum training
Our curriculum training strategy can gradually improve the
vectorization quality. We evaluated our curriculum training
strategy’s effects numerically by computing the average im-
age difference between the raster input clipart and the ras-
terized result of the vectorized clipart by using the proposed
method (i.e., we wanted the vector clipart to represent the
input raster clipart accurately). In particular, we normalized
the raster image to 0− 1 and used the total image difference
between the two images divided by the total pixel number.
We used 20 clipart images in the test set of ClipNet and
rasterized them as the input. We compared the following
three training strategies (TSs):
• TS1: Only the final stage was used.
• TS2: Only the second and final stages were used.
• TS3: all three stages were used.

Table 4 presents the quantitative metric results, and Fig-
ure 13 illustrates the vectorization results obtained by dif-
ferent training strategies. Our curriculum training scheme
achieved the smallest image difference and thus obtained
the best vectorization quality.

6.4 Application
Our generative model supports various applications, in-
cluding raster clipart vectorization, vector clipart synthesis,
and photo-to-clipart conversion.
Raster clipart vectorization The most straightforward ap-
plication of our generative model is to vectorize the artist-
drawn clipart stored in the raster format. Our goal was

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 11

(a) (b) (c) (d)

Fig. 13: Vectorization results of different training strategies.
Given (a) the input raster clipart, the result of TS1 (b) fails
to reconstruct some of the shapes and combine two separate
paths due to the lack of the layering knowledge introduced
in the second stage of training. With the introduction of
layering knowledge, the result of TS2 (c) improves and
better aids in reconstructing each closed path. (d) The full
curriculum training strategy (TS3) achieved the best vector-
ization result.

similar to that in [20]; however, our method can process an
anti-aliased input, and we first provide comparison against
to this method using anti-aliased input. We compared our
results with those obtained with a range of available meth-
ods, including two publicly available vectorization meth-
ods, namely Adobe Trace [1] and Vector Magic [9]. More-
over, we tested the proposed method against state-of-the-
art upscaling [18] and depixelization methods [19]. All the
results are presented in Figure 14 and Figure 15. Figure 17
presents a comparison of our method with a perceptual-
based method [20] using aliased input. We converted the
input vector clipart into an aliased raster image by using
Inkscape [2] and performed vectorization on the aliased
clipart. Our method generated a regular vector clipart de-
spite the aliasing conversion, whereas the perceptual-based
method [20] contained some irregular details due to the
rasterized clipart. In Figure 16, we also show the control
points of several synthesized results to demonstrate the
editability of our method.
Vector clipart synthesis For clipart synthesis, we first
synthesized various images containing different categories
of clipart. Then, we synthesized novel clipart by using
our generative model by adopting the aforementioned im-
ages as target images. Specifically, we used the training
data in ClipNet to train a conditional-GAN [70] with the
Wasserstein-GAN [71] (WGAN) training strategy with gra-
dient penalty [72]. After completing the training, we can
synthesized new clipart images of different categories. The
results obtained for different categories are presented in
Figure 18 and Figure 19, where the synthesized raster target
shape for each clipart is presented on the left and the vector
clipart is presented on the right.
Photo-to-clipart Another application of our method is to
synthesize the clipart of an input image I . The goal is
not to reproduce accurately the input image I pixel-by-
pixel but to generate perceived clipart similar to the input
image. For this purpose, we modified the loss function of
the rendering accuracy loss from the raw image difference
to the perceptual loss [73]. In particular, we used perceptual

loss on VGG16 features, which is expressed as follows:

Lperceptual(I, Î) =
4∑
j=1

1

Nj
‖φj(I)− φj(Î)‖22, (15)

where Î is the rendered image of the predicted clipart, and
φj denotes the feature output of the VGG16 [74] layers. We
used four layers, including conv1 1, conv1 2, conv3 2, and
conv4 2. We prepared the training data for this application
by improving the realism of clipart in ClipNet using [75].
In short, we prepared a real photograph dataset for each
category and used the adversarial training to make the
clipart more photo-realistic. In addition, we used the same
training process as that followed for other applications.
The converted clipart obtained from photos is presented in
Figure 20. We can observe that our method can synthesize
clipart that captures the structure of the object in the input
photograph.

7 CONCLUSIONS

This paper proposes an iterative synthesis model for syn-
thesizing vector clipart that can be used for raster clipart
vectorization, vector clipart synthesis, and photo-to-clipart
conversion. The key technical contribution of this paper
is that we formulated the clipart synthesis problem as an
iterative two-step process by using two separate modules;
namely the “Continue to add a layer?” and “What path to add
next?” modules. Then, we used a recurrent decoder to syn-
thesize the curves sequentially by using joint loss functions
(shape loss, symmetry loss, smoothness loss, and rendering
accuracy loss). In addition, we developed a dataset called
ClipNet, which is a collection of clipart of man-made objects,
to facilitate the training of the proposed synthesis model.
This dataset currently contains clipart on ten categories of
man-made objects and would continue to grow as addi-
tional clipart is uploaded to its web repositories. We eval-
uated the behavior and quality of the synthesized clipart on
various aspects. We demonstrated that our synthesis model
can vectorize and synthesize man-made object’ clipart that
can be recognized by humans. Our synthesis model can
synthesize clipart belonging to the ten categories of the Clip-
Net dataset, which is common for the previous synthesis
model [4]. Finally, we will make the aforementioned dataset
public in the future, and we believe that it would benefit
future research on data-driven vector graphics.

7.1 Limitations

Due to the complexity of the two-modules synthesis model
(especially the second module), our synthesis model can not
predict a new layer in real-time. Thus, simpler architectures
(e.g., those with a simpler recurrent decoder) to facilitate
faster inference are worth investigating. In addition, we
only used the constant color filling model in our vector
rendering model. Although this model is sufficient for
modeling considerable clipart, some clipart on the Internet
requires more complex color models, such as linear or radial
gradient models, or a complicated shading method [76].
We plan to investigate how to support the linear gradient
in our recurrent decoder to generate detailed clipart. A

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 12

(a) input (b) Adobe Trace (d) Vector Magic (e) Kopf 2011 (f) hqx (4x) (g) ours (a) input (b) Adobe Trace (c) Hoshyari 2018 (e) Kopf 2011 (f) hqx (4x) (g) ours(d) Vector Magic(c) Hoshyari 2018

Lorem ipsum dolor sit
amet, consectetuer
adipiscing elit, sed
diam nonummy nibh

Fig. 14: Vectorization of airplane, camera, chair, and headphones clipart. Given the input clipart (a), we compared our
result (e) with those obtained using (b) Adobe Trace [1], (c) Hoshyari et al. [20], (d) Vector Magic [9], (e) a depixelization
method [19], and (f) a popular pixel-art upscaling method [18].

(a) input (b) Adobe Trace (c) Hoshyari 2018 (e) Kopf 2011 (f) hqx (4x) (g) ours(d) Vector Magic

Fig. 15: Vectorization of lamp and guitar clipart. Given the
input clipat (a), we compared our result (e) with those
obtained using (b) Adobe Trace [1], (c) Hoshyari et al. [20],
(d) Vector Magic [9], (e) a depixelization method [19], and
(f) a popular pixel-art upscaling method [18].

Fig. 16: We show the control points of several vectorization
results to demonstrate the editability of our method. In each
shape, the gray points are the control points. The control
points generated by our method exhibit symmetry property
to enhance editability.

differentiable vector graphics rendering technique supports

(a)

(b) (c)

Fig. 17: Given the input aliased clipart, we compared (b) the
result of Hoshyari et al. [20] with (c) our result.

additional primitives, stroke styles, and color models, which
would considerably benefit our synthesis model.

Moreover, our synthesis model does not consider the
different viewpoints of clipart (e.g., the top, side, and front
views of an airplane) during training and inference. Numer-
ous types of clipart are created under different viewpoints.
Our synthesis model sometimes yields inappropriate clipart
results that combine structures from different viewpoints.
In the future, we will attempt to enrich our dataset with
viewpoint information and design a novel architecture that
considers the viewpoint information. Finally, we will extend
our dataset with different clipart styles (as explored in [77])
and design a framework to vectorize and synthesize clipart
in various styles.

ACKNOWLEDGMENTS

This work was supported in part by the Ministry of Science
and Technology, Taiwan, under Grant MOST109-2218-E-002-
030, 109-2634-F-002-032, and National Taiwan University.
And we are grateful to the National Center for High-
performance Computing. We want to thank Tzu-mao Li,
Sheng-Jie Luo, Yu-Ting Wu, Chi-Lan Yang, and anonymous
reviewers for insightful suggestions and discussion. I-Chao
Shen was supported by the MediaTek Fellowship.

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 13

airplane

camera

guitar

lamp

Fig. 18: Synthesized cliparts for airplanes, guitars, cameras, and lamps. In each example, the left image indicates the
synthesized raster clipart (as target shape) and the right image indicates the vector clipart synthesized by our method.

chair

table

hat

hat

headphone

Fig. 19: Synthesized cliparts for chairs, headphones, hats, and tables. In each example, the left image indicates the
synthesized raster clipart (as target shape) and the right image indicates the vector clipart synthesized by our method.

chair lamp

Fig. 20: Examples of clipart generated from photographs.
For each example, the left image indicates the input raster
photograph and the right image indicates the synthesized
clipart generated using our approach.

REFERENCES

[1] Adobe, “Adobe illustrator 2020: Image trace,” 2020. [Online].
Available: http://www.adobe.com/

[2] Inkscape Project, “Inkscape,” 2020. [Online]. Available: https:
//inkscape.org

[3] T. Karras, S. Laine, M. Aittala, J. Hellsten, J. Lehtinen, and T. Aila,
“Analyzing and improving the image quality of stylegan,” arXiv
preprint arXiv:1912.04958, 2019.

[4] E. Kalogerakis, S. Chaudhuri, D. Koller, and V. Koltun, “A proba-
bilistic model for component-based shape synthesis,” ACM Trans-
actions on Graphics (TOG), vol. 31, no. 4, p. 55, 2012.

[5] K. Wang, M. Savva, A. X. Chang, and D. Ritchie, “Deep convo-
lutional priors for indoor scene synthesis,” ACM Transactions on
Graphics (TOG), vol. 37, no. 4, p. 70, 2018.

[6] T.-M. Li, M. Lukáč, G. Michaël, and J. Ragan-Kelley, “Differen-
tiable vector graphics rasterization for editing and learning,” ACM
Trans. Graph. (Proc. SIGGRAPH Asia), vol. 39, no. 6, pp. 193:1–
193:15, 2020.

[7] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei, “Ima-
geNet: A Large-Scale Hierarchical Image Database,” in CVPR09,
2009.

[8] A. X. Chang, T. Funkhouser, L. Guibas, P. Hanrahan, Q. Huang,
Z. Li, S. Savarese, M. Savva, S. Song, H. Su et al., “Shapenet:
An information-rich 3d model repository,” arXiv preprint
arXiv:1512.03012, 2015.

[9] Vector Magic, “Cedar lake ventures,” 2020. [Online]. Available:
https://vectormagic.com/

[10] J.-D. Favreau, F. Lafarge, and A. Bousseau, “Photo2clipart: Image
abstraction and vectorization using layered linear gradients,”
ACM Transactions on Graphics (SIGGRAPH Asia Conference
Proceedings), vol. 36, no. 6, November 2017. [Online]. Available:
http://www-sop.inria.fr/reves/Basilic/2017/FLB17

[11] A. Orzan, A. Bousseau, H. Winnemöller, P. Barla, J. Thollot, and
D. Salesin, “Diffusion curves: a vector representation for smooth-
shaded images,” in ACM Transactions on Graphics (TOG), vol. 27,
no. 3. ACM, 2008, p. 92.

[12] J. Sun, L. Liang, F. Wen, and H.-Y. Shum, “Image vectorization us-
ing optimized gradient meshes,” in ACM Transactions on Graphics
(TOG), vol. 26, no. 3. ACM, 2007, p. 11.

[13] T. Xia, B. Liao, and Y. Yu, “Patch-based image vectorization with
automatic curvilinear feature alignment,” ACM Transactions on
Graphics (TOG), vol. 28, no. 5, p. 115, 2009.

[14] B. Kim, O. Wang, A. C. Öztireli, and M. Gross, “Semantic segmen-
tation for line drawing vectorization using neural networks,” in
Computer Graphics Forum, vol. 37, no. 2. Wiley Online Library,
2018, pp. 329–338.

[15] M. Bessmeltsev and J. Solomon, “Vectorization of line drawings
via polyvector fields,” ACM Transactions on Graphics (TOG), vol. 38,
no. 1, p. 9, 2019.

[16] Y. Liu, A. Agarwala, J. Lu, and S. Rusinkiewicz, “Data-driven
iconification,” in International Symposium on Non-Photorealistic An-
imation and Rendering (NPAR), May 2016.

[17] X. Jun, W. Holger, L. Wilmot, and S. Stephen, “Interactive vector-
ization,” in Proceedings of SIGCHI 2017. ACM, 2017.

[18] M. Stepin, “Hqx,” 2003. [Online]. Available: http://web.archive.
org/web/20070717064839/www.hiend3d.com/hq4x.html

[19] J. Kopf and D. Lischinski, “Depixelizing pixel art,” ACM Transac-
tions on graphics (TOG), vol. 30, no. 4, p. 99, 2011.

[20] S. Hoshyari, E. A. Dominici, A. Sheffer, N. Carr, Z. Wang, D. Cey-
lan, I. Shen et al., “Perception-driven semi-structured boundary
vectorization,” ACM Transactions on Graphics (TOG), vol. 37, no. 4,
p. 118, 2018.

[21] S. Chaudhuri, E. Kalogerakis, L. Guibas, and V. Koltun, “Prob-

http://www.adobe.com/
https://inkscape.org
https://inkscape.org
https://vectormagic.com/
http://www-sop.inria.fr/reves/Basilic/2017/FLB17
http://web.archive.org/web/20070717064839/www.hiend3d.com/hq4x.html
http://web.archive.org/web/20070717064839/www.hiend3d.com/hq4x.html

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 14

abilistic reasoning for assembly-based 3d modeling,” in ACM
Transactions on Graphics (TOG), vol. 30, no. 4. ACM, 2011, p. 35.

[22] M. Fisher, D. Ritchie, M. Savva, T. Funkhouser, and P. Hanrahan,
“Example-based synthesis of 3d object arrangements,” ACM Trans-
actions on Graphics (TOG), vol. 31, no. 6, p. 135, 2012.

[23] S. Lin, D. Ritchie, M. Fisher, and P. Hanrahan, “Probabilistic
color-by-numbers: Suggesting pattern colorizations using factor
graphs,” ACM Transactions on Graphics (TOG), vol. 32, no. 4, p. 37,
2013.

[24] D. P. Kingma and M. Welling, “Auto-encoding variational bayes,”
arXiv preprint arXiv:1312.6114, 2013.

[25] I. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley,
S. Ozair, A. Courville, and Y. Bengio, “Generative adversarial
nets,” in Advances in neural information processing systems, 2014, pp.
2672–2680.

[26] P. Isola, J.-Y. Zhu, T. Zhou, and A. A. Efros, “Image-to-image
translation with conditional adversarial networks,” arxiv, 2016.

[27] J.-Y. Zhu, T. Park, P. Isola, and A. A. Efros, “Unpaired image-to-
image translation using cycle-consistent adversarial networks,” in
Computer Vision (ICCV), 2017 IEEE International Conference on, 2017.

[28] J. Li, K. Xu, S. Chaudhuri, E. Yumer, H. Zhang, and L. Guibas,
“Grass: Generative recursive autoencoders for shape structures,”
ACM Transactions on Graphics (TOG), vol. 36, no. 4, p. 52, 2017.

[29] C. Zhu, K. Xu, S. Chaudhuri, R. Yi, and H. Zhang, “Scores: Shape
composition with recursive substructure priors,” ACM Transac-
tions on Graphics (TOG), vol. 37, no. 6, p. 211, 2019.

[30] M. Li, A. G. Patil, K. Xu, S. Chaudhuri, O. Khan, A. Shamir,
C. Tu, B. Chen, D. Cohen-Or, and H. Zhang, “Grains: Generative
recursive autoencoders for indoor scenes,” ACM Transactions on
Graphics (TOG), vol. 38, no. 2, p. 12, 2019.

[31] C. Zou, E. Yumer, J. Yang, D. Ceylan, and D. Hoiem, “3d-prnn:
Generating shape primitives with recurrent neural networks,” in
The IEEE International Conference on Computer Vision (ICCV), 2017.

[32] Z. Yan, R. Hu, X. Yan, L. Chen, O. Van Kaick, H. Zhang,
and H. Huang, “Rpm-net: Recurrent prediction of motion
and parts from point cloud,” ACM Trans. Graph., vol. 38,
no. 6, pp. 240:1–240:15, Nov. 2019. [Online]. Available:
http://doi.acm.org/10.1145/3355089.3356573

[33] D. Ha and D. Eck, “A neural representation of sketch drawings,”
arXiv preprint arXiv:1704.03477, 2017.

[34] X. Zheng, X. Qiao, Y. Cao, and R. W. Lau, “Content-aware gen-
erative modeling of graphic design layouts,” ACM Transactions on
Graphics (TOG), vol. 38, no. 4, p. 133, 2019.

[35] J. Li, T. Xu, J. Zhang, A. Hertzmann, and J. Yang, “LayoutGAN:
Generating graphic layouts with wireframe discriminator,” in
International Conference on Learning Representations, 2019. [Online].
Available: https://openreview.net/forum?id=HJxB5sRcFQ

[36] D. Acuna, H. Ling, A. Kar, and S. Fidler, “Efficient interactive
annotation of segmentation datasets with polygon-rnn++,” in
Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition, 2018, pp. 859–868.

[37] C. Han, Q. Wen, S. He, Q. Zhu, Y. Tan, G. Han, and T.-T. Wong,
“Deep unsupervised pixelization,” ACM Transactions on Graphics
(SIGGRAPH Asia 2018 issue), vol. 37, no. 6, pp. 243:1–243:11,
November 2018.

[38] R. G. Lopes, D. Ha, D. Eck, and J. Shlens, “A learned repre-
sentation for scalable vector graphics,” in The IEEE International
Conference on Computer Vision (ICCV), October 2019.

[39] O. Sbai, C. Couprie, and M. Aubry, “Vector image genera-
tion by learning parametric layer decomposition,” arXiv preprint
arXiv:1812.05484, 2018.

[40] T. Y. Wang, D. Ceylan, J. Popovic, and N. J. Mitra, “Learning a
shared shape space for multimodal garment design,” ACM Trans.
Graph., vol. 37, no. 6, pp. 1:1–1:14, 2018.

[41] E. Guérin, J. Digne, E. Galin, A. Peytavie, C. Wolf, B. Benes, and
B. Martinez, “Interactive example-based terrain authoring with
conditional generative adversarial networks,” Acm Transactions on
Graphics (TOG), vol. 36, no. 6, p. 228, 2017.

[42] D. Bau, H. Strobelt, W. Peebles, J. Wulff, B. Zhou, J. Zhu, and
A. Torralba, “Semantic photo manipulation with a generative
image prior,” ACM Transactions on Graphics (Proceedings of ACM
SIGGRAPH), vol. 38, no. 4, 2019.

[43] T. C. L. Hin, I. Shen, I. Sato, T. Igarashi et al., “Interactive sub-
space exploration on generative image modelling,” arXiv preprint
arXiv:1906.09840, 2019.

[44] J.-Y. Zhu, P. Krähenbühl, E. Shechtman, and A. A. Efros, “Gen-
erative visual manipulation on the natural image manifold,” in
Proceedings of European Conference on Computer Vision (ECCV), 2016.

[45] T.-Y. Lin, M. Maire, S. Belongie, J. Hays, P. Perona, D. Ramanan,
P. Dollár, and C. L. Zitnick, “Microsoft coco: Common objects in
context,” in European conference on computer vision. Springer, 2014,
pp. 740–755.

[46] Z. Liu, P. Luo, X. Wang, and X. Tang, “Deep learning face attributes
in the wild,” in Proceedings of the IEEE international conference on
computer vision, 2015, pp. 3730–3738.

[47] F. Perazzi, J. Pont-Tuset, B. McWilliams, L. Van Gool, M. Gross,
and A. Sorkine-Hornung, “A benchmark dataset and evaluation
methodology for video object segmentation,” in Computer Vision
and Pattern Recognition, 2016.

[48] Z. Wu, S. Song, A. Khosla, F. Yu, L. Zhang, X. Tang, and J. Xiao,
“3d shapenets: A deep representation for volumetric shapes,” in
Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), June 2015.

[49] K. Mo, S. Zhu, A. X. Chang, L. Yi, S. Tripathi, L. J. Guibas,
and H. Su, “PartNet: A large-scale benchmark for fine-grained
and hierarchical part-level 3D object understanding,” in The IEEE
Conference on Computer Vision and Pattern Recognition (CVPR), June
2019.

[50] S. Koch, A. Matveev, Z. Jiang, F. Williams, A. Artemov, E. Burnaev,
M. Alexa, D. Zorin, and D. Panozzo, “Abc: A big cad model
dataset for geometric deep learning,” in The IEEE Conference on
Computer Vision and Pattern Recognition (CVPR), June 2019.

[51] S. Song, F. Yu, A. Zeng, A. X. Chang, M. Savva, and T. Funkhouser,
“Semantic scene completion from a single depth image,” Pro-
ceedings of 30th IEEE Conference on Computer Vision and Pattern
Recognition, 2017.

[52] M. Shugrina, Z. Liang, A. Kar, J. Li, A. Singh, K. Singh, and
S. Fidler, “Creative flow+ dataset,” in The IEEE Conference on
Computer Vision and Pattern Recognition (CVPR), June 2019.

[53] Y. Gryaditskaya, M. Sypesteyn, J. W. Hoftijzer, S. Pont,
F. Durand, and A. Bousseau, “Opensketch: A richly-annotated
dataset of product design sketches,” ACM Transactions on
Graphics (SIGGRAPH Asia Conference Proceedings), vol. 38, no. 6,
November 2019. [Online]. Available: http://www-sop.inria.fr/
reves/Basilic/2019/GSHPDB19

[54] M. Eitz, J. Hays, and M. Alexa, “How do humans sketch objects?”
ACM Trans. Graph. (Proc. SIGGRAPH), vol. 31, no. 4, pp. 44:1–44:10,
2012.

[55] F. Cole, A. Golovinskiy, A. Limpaecher, H. S. Barros, A. Finkelstein,
T. Funkhouser, and S. Rusinkiewicz, “Where do people draw
lines?” ACM Trans. Graph., vol. 27, no. 3, pp. 88:1–88:11, Aug. 2008.
[Online]. Available: http://doi.acm.org/10.1145/1360612.1360687

[56] S. Bell, P. Upchurch, N. Snavely, and K. Bala, “Opensurfaces: A
richly annotated catalog of surface appearance,” ACM Transactions
on graphics (TOG), vol. 32, no. 4, p. 111, 2013.

[57] J. Long, E. Shelhamer, and T. Darrell, “Fully convolutional net-
works for semantic segmentation,” in Proceedings of the IEEE
conference on computer vision and pattern recognition, 2015, pp. 3431–
3440.

[58] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimiza-
tion,” 2014.

[59] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for
image recognition,” in Proceedings of the IEEE conference on computer
vision and pattern recognition, 2016, pp. 770–778.

[60] S. Hochreiter and J. Schmidhuber, “Long short-term memory,”
Neural computation, vol. 9, no. 8, pp. 1735–1780, 1997.

[61] H. Fan, H. Su, and L. J. Guibas, “A point set generation network
for 3d object reconstruction from a single image,” in Proceedings of
the IEEE conference on computer vision and pattern recognition, 2017,
pp. 605–613.

[62] O. Sorkine, D. Cohen-Or, Y. Lipman, M. Alexa, C. Rössl, and H.-
P. Seidel, “Laplacian surface editing,” in Proceedings of the 2004
Eurographics/ACM SIGGRAPH symposium on Geometry processing.
ACM, 2004, pp. 175–184.

[63] Y. Bengio, J. Louradour, R. Collobert, and J. Weston, “Curriculum
learning,” in Proceedings of the 26th annual international conference
on machine learning, 2009, pp. 41–48.

[64] G. Hacohen and D. Weinshall, “On the power of curriculum learn-
ing in training deep networks,” arXiv preprint arXiv:1904.03626,
2019.

[65] Y. Li, X. Wu, Y. Chrysathou, A. Sharf, D. Cohen-Or, and N. J.
Mitra, “Globfit: Consistently fitting primitives by discovering

http://doi.acm.org/10.1145/3355089.3356573
https://openreview.net/forum?id=HJxB5sRcFQ
http://www-sop.inria.fr/reves/Basilic/2019/GSHPDB19
http://www-sop.inria.fr/reves/Basilic/2019/GSHPDB19
http://doi.acm.org/10.1145/1360612.1360687

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 15

global relations,” vol. 30, no. 4, Jul. 2011. [Online]. Available:
https://doi.org/10.1145/2010324.1964947

[66] A. Paszke, S. Gross, S. Chintala, G. Chanan, E. Yang, Z. DeVito,
Z. Lin, A. Desmaison, L. Antiga, and A. Lerer, “Automatic differ-
entiation in PyTorch,” in NIPS Autodiff Workshop, 2017.

[67] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for
image recognition,” in 2016 IEEE Conference on Computer Vision and
Pattern Recognition (CVPR), June 2016, pp. 770–778.

[68] J. Ba, J. R. Kiros, and G. E. Hinton, “Layer normalization,” ArXiv,
vol. abs/1607.06450, 2016.

[69] W. Yin, K. Kann, M. Yu, and H. Schütze, “Comparative study
of cnn and rnn for natural language processing,” ArXiv, vol.
abs/1702.01923, 2017.

[70] M. Mirza and S. Osindero, “Conditional generative adversarial
nets,” CoRR, vol. abs/1411.1784, 2014. [Online]. Available:
http://arxiv.org/abs/1411.1784

[71] M. Arjovsky, S. Chintala, and L. Bottou, “Wasserstein gan,” arXiv
preprint arXiv:1701.07875, 2017.

[72] I. Gulrajani, F. Ahmed, M. Arjovsky, V. Dumoulin, and A. C.
Courville, “Improved training of wasserstein gans,” in Advances
in neural information processing systems, 2017, pp. 5767–5777.

[73] J. Johnson, A. Alahi, and L. Fei-Fei, “Perceptual losses for real-
time style transfer and super-resolution,” in European conference on
computer vision. Springer, 2016, pp. 694–711.

[74] K. Simonyan and A. Zisserman, “Very deep convolutional
networks for large-scale image recognition,” arXiv preprint
arXiv:1409.1556, 2014.

[75] A. Shrivastava, T. Pfister, O. Tuzel, J. Susskind, W. Wang, and
R. Webb, “Learning from simulated and unsupervised images
through adversarial training,” in Proceedings of the IEEE conference
on computer vision and pattern recognition, 2017, pp. 2107–2116.

[76] J. Lopez-Moreno, P. Stefan, A. Bousseau, M. Agrawala, and
G. Drettakis, “Depicting stylized materials with vector shade
trees,” 2013.

[77] E. Garces, A. Agarwala, D. Gutierrez, and A. Hertzmann, “A
similarity measure for illustration style,” ACM Transactions on
Graphics (SIGGRAPH 2014), vol. 33, no. 4, 2014.

I-Chao Shen is a JSPS postdoctoral researcher
at the Graduate School of Information Science
and Technology at the University of Tokyo, work-
ing with Takeo Igarashi. He did his Ph.D. in
the computer graphics group at National Taiwan
University, advised by Robin Bing-Yu Chen. He
received B.B.A and M.B.A degrees in information
management from National Taiwan University, in
2009 and 2011, respectively. He was a research
assistant in the Imager lab of The University of
British Columbia, a research internship in the

Imagination lab of Adobe Corporation, and visiting researcher at The
University of Tokyo.

Bing-Yu Chen received the B.S. and M.S. de-
grees in computer science and information engi-
neering from National Taiwan University, in 1995
and 1997, respectively, and the Ph.D. degree
in information science from The University of
Tokyo, Japan, in 2003. He is currently a pro-
fessor with National Taiwan University. His cur-
rent research interests include computer graph-
ics, image and video processing, and human-
computer interaction. He is a senior member of
ACM.

https://doi.org/10.1145/2010324.1964947
http://arxiv.org/abs/1411.1784

	Introduction
	Related Work
	Image vectorization and clipart synthesis
	Generative model
	Image and shape dataset

	ClipNet : Clipart collection of Man-made objects
	Data Characteristics
	Data Preprocessing

	Problem Formulation
	Synthesis Model
	Visual representation of the canvas
	First step: Decision on whether to continue adding layers?
	Training data and process

	Second step: decision on which path to add next?
	Network architecture
	Loss Function
	Training data and process

	Shape Regularization

	Results and Evaluations
	Data analysis
	Implementation details
	Ablation study
	Effect of the Recurrent Decoder
	Effects of symmetry loss
	Effects of rendering accuracy loss
	Effects of shape loss combination
	Effects of curriculum training

	Application

	Conclusions
	Limitations

	References
	Biographies
	I-Chao Shen
	Bing-Yu Chen

