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iHuman

Figure 1: Given only a few input images, our method can reconstruct an animatable human avatar with robust animation
results. In contrast, previous work iHuman [29] and GART [20] cannot inpaint invisible regions and produce artifacts during

animation.

Abstract

Recent works have adopted 3D Gaussian Splatting
(3DGS) to represent animatable avatars. However, these
methods require a substantial number of images to train
a high-fidelity avatar and often fail to produce photo-
realistic images when the driven poses are different from
those used during training. To address these challenges,
we propose CleanAvatar, a two-stage framework for
reconstructing high-quality animatable avatars with a
limited number of frames. In the first stage, we opti-
mize a GS avatar and a mesh avatar simultaneously and
use the mesh avatar to guide the GS avatar in reducing
the invisible regions in training images. Then, we pro-
pose a data augmentation method that generates clean

rendered images of the GS avatar in unseen poses us-
ing a pre-trained segmentation model. Afterwards, we
update the GS avatar with both the original and aug-
mented images as training data. Experimental results
on three public datasets show that our method can re-
construct high-fidelity avatars from a limited number of
input images and produce artifact-free results for un-
seen poses in comparison to existing methods. The code
will be available online.

Keywords: Avatar reconstruction, Gaussian splatting,
Dual representation.
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1. Introduction

Human avatar creation plays a central role in immersive
applications such as virtual reality, the Metaverse, gaming,
and movie production. Early approaches [5, 3] rely on spe-
cialized hardware, such as depth sensors or dense multi-
view camera rigs, which limits their scalability in practi-
cal scenarios. This has driven increasing interest in recon-
structing animatable avatars directly from sparse monocular
video inputs, a setting that is both more practical and signif-
icantly more challenging.

Early monocular methods [, 2] employ mesh-based rep-
resentations and surface rendering to create personalized
avatars. Although efficient, they often produce limited pho-
torealism even for training poses. To address this, subse-
quent works [47, 31, 15, 8, 14, 12] adopt Neural Radiance
Fields (NeRF) [25], which improve fidelity but suffer from
heavy computational costs and slow rendering, hindering
their usability in interactive applications.

Recent progress in 3D Gaussian Splatting (3DGS) [17]
has shown great potential for real-time high-fidelity avatar
rendering. Several methods [20, 33, 23] leverage GS as
their canonical representation and achieve impressive qual-
ity when the target poses closely match the training poses.
However, GS parameters such as rotation and scaling often
overfit the limited training poses, leading to blurry and dis-
torted artifacts in unseen poses, especially along silhouette
boundaries. Hybrid schemes that integrate GS with para-
metric human templates [29, 37] alleviate overfitting but re-
strict the expressiveness of GS, thereby lowering rendering
quality. Moreover, these approaches struggle to infer invisi-
ble regions unseen in the input views. Diffusion-prior-based
methods such as HaveFun [43] attempt to inpaint invisible
regions and improve animation robustness by leveraging a
mesh proxy. While effective to some extent, diffusion priors
tend to hallucinate appearances inconsistent with the train-
ing images, which is undesirable for applications requiring
faithful reproduction.

In this work, we introduce CleanAvatar, a two-stage
framework that explicitly addresses both invisible-region
completion and boundary artifacts in monocular avatar re-
construction. Our design is motivated by two insights: (1)
Mesh avatars provide strong geometric priors that can regu-
larize GS in unobserved regions; (2) High-quality silhouette
masks extracted from a segmentation-prior model can be
used to generate clean synthetic training data that mitigate
boundary artifacts without introducing appearance halluci-
nation.

In the first stage, we jointly optimize a mesh-based avatar
and a GS-based avatar in the canonical space. The mesh
avatar acts as a geometric teacher, guiding the GS avatar to
infer the appearance of invisible regions by enforcing ren-
dering consistency between the two. This mesh-guided su-
pervision significantly improves the completeness and faith-

fulness of the GS avatar.

In the second stage, we propose CleanMask, a
segmentation-driven data augmentation scheme. We ob-
serve that modern segmentation models such as Segment
Anything Model (SAM) [ 18], trained on massive clean im-
age corpora, can predict smooth and artifact-free silhou-
ettes even for flawed GS renderings of novel poses. Rather
than serving as a generative prior, SAM is exploited here
as a mask extractor: we render the avatar under diverse
unseen poses, extract reliable silhouettes using SAM, and
blend them with the corresponding GS renders to create
artifact-free synthetic images. Retraining the GS avatar
with both original and cleaned images enhances its robust-
ness to novel poses and suppresses boundary artifacts.

Experimental results on three datasets demonstrate the
superior performance of our method across multiple as-
pects, including the following: 1) high-quality rendering; 2)
robustness to novel poses; 3) faithful reproduction of train-
ing images; and 4) requiring only a few images. As shown
in Figure 1, given three images, our method can reconstruct
an animatable human avatar with artifact-free animation re-
sults. Our main contribution can be summarized as follows:

* We propose a novel two-stage avatar reconstruction
model, dubbed CleanAvatar, which generates high-
quality and animation-robust avatar without the need
for substantial training images.

* We propose a mesh-guided Gaussian avatar generation
method, to obtain an avatar that infers the invisible re-
gions and faithfully matches the training images.

* We propose a data augmentation method to obtain
additional artifact-free training images using a pre-
trained segmentation model. To the best of our knowl-
edge, this is the first time that segmentation prior is
adopted to remove artifacts for data augmentation.

2. Related Work
2.1. Mesh-based Reconstruction

With the human template model, i.e., SMPL [24] and
SMPL-X [30], many methods [40, I, 2, , 22] have
adopted mesh-based representations with surface rendering
to model human avatars. To improve geometric accuracy,
these methods typically add displacements to the vertices of
the template model and use texture maps to represent color
information. For instance, Alldieck et al. [2] introduced a
visual hull method to optimize the geometry of SMPL us-
ing monocular video, leading to a personalized blend shape
model. Zhao et al. [46] proposed a dynamic surface net-
work to reconstruct pose-dependent geometry and coarse
texture, and then refined the rendering with a reference-
based neural rendering network. To reduce the number of



input images needed, Alldieck et al. [1] predicted geome-
try based on SMPL with vertex displacements directly from
monocular images and employed a graph cut-based opti-
mization method using eight frames to compute the texture
map. These approaches produce mesh avatars that are ro-
bust for animating novel poses. However, due to the fixed
topology and limited resolution of both the mesh and tex-
ture map, modeling fine-grained appearance details remains
a challenge, resulting in suboptimal rendering outcomes.
In this paper, rather than relying solely on a mesh repre-
sentation, we adopt 3D Gaussian Splatting to achieve more
realistic results. Additionally, we introduce a mesh avatar to
assist in inpainting the invisible regions of the 3DGS avatar.

2.2. Implicit Function-based Reconstruction

To achieve better rendering results, many methods [31,

, , 8, 4, 9] have adopted Neural Radiance Fields
(NeRF) [25] as their canonical representation, and adopt
SMPL [24] as the deformation guidance. These methods
learn an implicit function, i.e., occupancy, via multilayer
perceptron (MLP). With this representation, these methods
achieve promising results and can be used to model loose
clothes. However, the computational complexity and slow
rendering speed of NeRF limit these methods’ suitability
for real-time applications. While some methods [15, 16]
have attempted to reduce training time and improve render-
ing speed, they still require a large number of images to
generate a high-quality avatar.

To address these challenges, we propose CleanAvatar,
which can generate high-quality and artifact-free avatar
from a limited number of input images.

2.3. Gaussian Splat-based reconstruction

3D Gaussian Splatting (3DGS) [17] is an emerging al-
ternative that offers an efficient approach to 3D scene re-
construction by representing objects through a sparse set of
3D Gaussians, which can achieve high-quality reconstruc-
tions with real-time rendering. Many methods [23, 27, 20,

, 28, 6] introduced GS as their representation to model
avatars in the canonical space. These methods produce re-
alistic images when driving poses are similar to the training
images, but the rendered results often contain artifacts when
the driving poses fall significantly outside the training set.
Therefore, these methods require a large number of images
with diverse poses to train the avatar. To address these chal-
lenges, some methods [29, 39, 37, 45] have integrated mesh
representations by binding GS to each mesh face, achiev-
ing more robust animation results and reducing the number
of required training images. However, mesh representations
can limit the flexibility of 3DGS, leading to suboptimal out-
comes. Furthermore, GS-based methods, due to their dis-
crete nature, cannot inpaint invisible regions in the training
images.

In this paper, we propose a mesh-guided Gaussian avatar
generation method that produces a high-quality avatar from
a small number of images. Our approach alleviates the lim-
itations of mesh-embedded GS avatar reconstruction meth-
ods and can inpaint invisible regions.

3. Preliminaries
3.1. Linear Blend Skinning

To model animatable humans, a popular way is model-
ing geometry and appearance in a canonical space [33, 20].
Then, linear blend skinning (LBS) [21] based on the human
parametric template, e.g., SMPL [24], is used to deform the
avatar from the canonical space to the observation space. In
practice, we adopt SMPL with n = 24 joints as our human
template. Then, for a point x. in the canonical space, we
adopt LBS to deform it to the observation space. Mathe-
matically, this can be expressed as:

= LBS(z.; B ZW (zc)Bre, (D
k=1

where }V denotes the function that queries skinning weights
of a given point, which can be formulated by a predefined
or learnable skinning weight field.

3.2. 3D Gaussian Splatting (3DGS)

3DGS [17] is a static representation, which models the
scene using a set of Gaussian primitives. Consider a Gaus-
sian G; = {pi,ri, Si, 04, fi}, where u represents the 3D
mean, r denotes the 3D rotation, s corresponds to the scal-
ing factors along the three axes, o is the opacity, and f rep-
resents the spherical harmonics coefficients. The 3D covari-
ance is given by:

¥; = rydiag(s?)rl. )

To project a 3D Gaussian into the 2D image plane, a
viewing transformation W and the Jacobian J of the affine
approximation of the projective transformation are applied.
The 2D covariance 3 is defined as:

Y = JwEwrJT. 3)

After that, the color of each pixel can be computed using
alpha blending:

C’Zo
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where o; is the density contribution weighted o; by the
2D covariance, and ¢; is computed by evaluating view-
dependent Spherical harmonics with coefficients f;.
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4. Method

Given a set of images {I;}}£, from a monocular cam-
era, we aim to reconstruct a high-quality Gaussian Splatting
(GS) avatar capable of robust animation results. To achieve
this, we propose CleanAvatar, a two-stage framework to re-
construct high-quality avatars from monocular images (Fig-
ure 2). The most significant differences compared with ex-
isting methods are that we adopt mesh representation as
a guidance to inpaint invisble regions in training images,
and leverage the pretrained segmentation model to augment
clean animation results as training data. Inspired by [1], we
observe that, by using position-aware functions, the mesh
avatar with surface rendering can obtain reasonable results
for invisible regions in training images. Therefore, in the
first stage, by introducing a mesh avatar to supervise the GS
avatar in the canonical space, we first obtain a preliminary
avatar that is faithful to the training images and can inpaint
invisible regions. However, the animation results often ex-
hibit many artifacts in boundary regions due to limited ob-
servations. To obtain additional images in different poses,
we find that the pretrained segmentation model can remove
artifacts effectively. In the second stage, we first animate
the flawed avatar from the first stage to obtain many im-
ages in arbitrary poses, and adopt Segment Anything Model
(SAM) [18] to remove artifacts in rendered images. Then,
we retrain a GS avatar using original training images and

additional artifact-free images, resulting in a high-quality
avatar with robust animation performance.

4.1. DualAvatar Generation

Previous works [20, 33, 29] ignore the invisible regions
in the training images, and thus require a large number
of images to train a GS avatar, limiting the practical ap-
plications. HaveFun [43] introduces a 3D diffusion prior
and mesh representation to inpaint invisible regions, and
achieves promising results on avatar reconstruction from
few-shot images. However, the diffusion prior can lead to
hallucinated appearance, leading to plausible but unfaith-
ful results compared to the input images. We observe that
mesh-based avatars, due to surface renderings one-to-one
ray-surface correspondence, inherently produce compact
and occlusion-aware color estimation. As demonstrated in
Figure 3, optimizing texture maps on an SMPL-based mesh
yields precise visible-region colors, whereas GS avatars
based on volume rendering leak artifacts into unobserved
areas. Although mesh rendering alone may lack photore-
alism, we leverage its geometric discipline to reduce in-
visible regions via position-aware color prediction, ensur-
ing fidelity to the input. To bridge realism and robustness,
we propose DualAvatar, a hybrid framework that syner-
gizes mesh and GS representations. By co-optimizing both
avatars in canonical space, we transfer the meshs structured
inpainting to the GS avatar, achieving faithful completion of



occluded regions without diffusion-induced hallucinations.

4.1.1 Avatar Representation

We adopt 2DGS [ 1] as the representation of our GS avatar,
and utilize Deep Marching Tetrahedra (DMTet) [38] as the
representation of our mesh avatar. Both avatars are defined
in the canonical space, i.e., “Da” pose, and can be animated
using LBS (details can be found in the supplemental docu-
ment). The GS avatar, denoted as G.A, is presented as:

GA = {pi,7i, 81,04, [}y, )

where N is the total number of Gaussians, u; represents
the Gaussian mean, r; denotes rotation, s; indicates scaling
factors, o; is opacity, and f; refers to spherical harmonics
coefficients.

The mesh avatar MA = (V, F), where V denotes the
vertices and F' represents the mesh faces, is derived from a
tetrahedra representation using DMTet [38]. For each ver-
tex in the tetrahedra grid, we adopt a learnable signed dis-
tance field (SDF) to compute the SDF value, enabling the
differential extraction of the mesh avatar M A [38]. To ob-
tain the color of each vertex, we adopt a multilayer percep-
tron (MLP) with a hash table encoder. Given the position of
each vertex v; in the mesh avatar, its color v{ is computed
as:

vi = g(h(vi), (6)

where ¢ denotes the MLP layer and A is the hash en-
coder [15]. This design helps to reduce invisible regions
in the mesh avatar, as unsupervised vertices with similar
positions are likely to produce similar colors.

4.1.2 Avatar Optimization

With the canonical GS avatar and mesh avatar, we need to
deform both avatars from the canonical space to the obser-
vation space according to the pose parameters 0 estimated
from input images I. To obtain the deformed GS avatar
GA,, we take each Gaussian G.A; as a vertex, and deform
it using linear blend skinning (LBS). Because we aim to
reconstruct avatars from a limited number of images, we
do not model dynamic details using the learnable skinning
field. Instead, we directly use the skinning field of SMPL
as the predefined skinning prior. Similarly, the mesh avatar
is deformed to the observation space, denoted as MA,,.

To optimize both avatars, we render images and mini-
mize the difference between the rendered images and the
ground truth images. Gaussian Rasterization [11] is used
for rendering the GS avatar and Nvidiffrast [ 19] is employed
for rendering the mesh avatar. Let 1(G.A,) and I(M.A,)
denote the rendered images of the GS and mesh avatars, re-
spectively. We adopt a combination of an £; term and a

SSIM term [20] to optimize both avatars:

Lgo = L1(I,1(GA)) + Lssin(I,1(GA,)), (7)

Lomo = L1(I, [(MA,)) + Lssiar(I, [(MA,)), (8)

where L4, and L,,, represent the image loss terms for the
GS avatar and the mesh avatar, respectively.

The GS avatar and the mesh avatar each have their own
advantages. On the one hand, the GS avatar benefits from
the efficiency of GS rasterization, making it easier to train
effectively, whereas the mesh avatar is challenging to opti-
mize due to the lack of explicit geometric information. On
the other hand, the mesh avatar excels at inpainting invisible
regions, a capability the GS avatar lacks. To harness their
complementary strengths, we employ mutual guidance be-
tween them.

GS-guided reconstruction for mesh avatar. Reconstruct-
ing a high-quality mesh avatar from limited images is chal-
lenging due to insufficient geometric supervision. To ad-
dress this, we introduce a Chamfer Distance loss Lcp be-
tween the GS avatar and the mesh avatar in the canonical
space, leveraging the geometric structure of the GS avatar
to guide the optimization of the mesh avatar.

Mesh-guided refinement for GS avatar. To reduce the in-
visible regions of the GS avatar, we minimize the difference
between the rendered images of the mesh avatar and the GS
avatar in the canonical space. However, it is difficult to dis-
tinguish the invisible regions for the GS avatar. Therefore,
in the first stage, though the low-quality mesh images can
affect the quality of the GS avatar in visible regions of the
training images, we adopt the £ term applied to all pixels
in the rendered images, which can be formulated as:

Lge = L1(1(GA,), sg([(MA,))), ©9)

where sg indicates that the gradient is stopped to prevent
backpropagation through the rendered mesh images.
Therefore, the overall loss function in the first stage is:

,Cf = »Cgo + Ol»cmo + BCCD + 'Y'Cgcv (10)

where «, [ and v are the weighting factors that balance
different loss terms.

4.2. CleanMask for Artifacts Removal

Previous works [20, 33] adopt anisotropy regularizer to
obtain better animation results. However, they fail to ob-
tain robust results when driving poses are different from
training poses, leading to the need of substantial number
of training images with varied poses [42]. Though some
approaches [29] combine GS with mesh representations to
improve animation results, these methods can limit the flex-
ible capacity of GS, ultimately reducing the quality of ren-
dered results. To obtain robust animation results while
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Figure 3: The motivation of mesh guidance. (a) Surface rendering (red rays) enforces one-to-one ray-to-surface corre-
spondence, enabling precise texture optimization in visible regions (c). In contrast, volume rendering suffers from alpha-
compositing artifacts due to uncontrolled blending along rays, which results in visible discontinuities and unrealistic texture

reconstruction in occluded areas (d).

preserving the capacity of GS, we find that universal im-
age semantic segmentation model, i.e., Segment Anything
(SAM) [18, 35], can generate clean masks even when the
input images contain artifacts, as shown in Figure 2 (b). The
primary reason enabling SAM to deliver artifact-free masks
is its training on clean, artifact-free image pairs, allowing it
to function as a strong prior for generating accurate human
masks even in the presence of artifacts. Leveraging this in-
sight, we propose CleanMask, a novel approach to augment
training images by animating the avatar generated in the
first stage and cleaning the animation results. While some
approaches [41] adopt generative models to inpaint invis-
ible regions for 3D reconstruction, introducing additional
texture information, our method instead uses a segmenta-
tion model to remove artifacts. This avoids introducing any
external texture, guaranteeing the final avatar’s fidelity to
the original training images.

Given the avatar G.A from the first stage, we render ad-
ditional images in unseen poses. For each rendered image
1, containing artifacts, we first estimate the mask M, using
SAM. Then, the clean image I, is obtained by applying the
output mask as the artifacts cleaner to the original image /;:

I.=1, x M,. (11)

This straightforward process can remove the artifacts in the
rendered image, and the clean image /. can be used as an
augmented training image.

By applying the CleanMask method, we generate a new
set of training images in previously unseen poses. Using
these augmented images and the original training images,
a new GS avatar GA¢ can be obtained according to Sec-
tion 4.1.2. It should be noted that, the augmented images
do not introduce additional texture information, unlike dif-
fusion priors used in some few-shot methods [43]. This en-
sures that the final avatar remains faithful to the original

training images. Because the mesh information is stored in
the avatar from the first stage and we take the additional im-
ages rendered by the GS avatar G.A, we do not use the mesh
avatar in the second stage, which means that we only adopt
Lo as the loss function for the second stage.

4.3. Training details

We initialize the GS (Gaussian splatting) avatar using
SMPL body mesh in the “Da” pose, and adopt the densify-
and-prune strategy [|1] during optimization. In the first
stage, we start by optimizing the mesh avatar and GS avatar
for 1, 500 iterations. During this process, GS-guided recon-
struction Lo p is adopted to obtain a robust mesh avatar.
Therefore, o, 3, are set to 1,10,0. After that, the mesh
avatar is fixed. Then, we train the GS avatar with the guid-
ance of the mesh avatar £, for another 1,500 iterations.
«, 3,7y are set to 0, 0, 1 during this process. While the mesh
avatar is robust for invisible regions, the mesh-rendered
images are blurry, which can influence the texture of GS
avatar. To alleviate the effect of the blurry mesh-rendered
images, we adopt mesh-guided refinement every 10 iter-
ations. For each subject, the whole GS avatar is trained
in 3,000 iterations. In the second stage, the clean mask
is obtained by querying the “human”, “shirt” and “pants”
for images using [35]. The training time for stage-1 is
about 6 minutes, data augmentation takes about 1 minute,
and stage-2 is about 2 minutes. Overall, the total training
time is around 9 minutes on an NVIDIA 3090 GPU. We
will make our code available for research purposes.

5. Experiment
5.1. Evaluation Setting

We conduct experiments on avatar reconstruction task
from limit monocular video observations on three datasets,
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including People-Snapshot [2], ZJU-MoCap [32], and FS-
XHumans [43].

People-Snapshot [2]. Following previous works [15, 20,
29], we adopt 4 sequences with different identities. This
dataset contains monocular videos of a human rotating in
front of a camera, resulting in limited pose variations.
ZJU-MoCap [32]. We adopt 6 sequences as the evalua-

tion data for ZJU-MoCap dataset following [20, 33]. This
dataset contains multi-view videos of a human in dynamic
poses.

FS-XHumans [43]. Introduced by Yang et al. [43], this
synthetic dataset is designed for avatar reconstruction from
few-shot images. For each identity, they take 8 scans to
render the training images, and use an A-pose scan to render
24 images from different view as the test data. However,
because the test images are not available and it is difficult
to evaluate the quality of GS avatar using A-pose images,
we render dynamic pose sequences from XHumans as test
images.

We uniformly sample different numbers of images as the
training data, i.e., 3/6/9 images for People-Snapshot and
ZJU-MoCap, and 4/8 images for FS-XHumans. We eval-
uate the quality of rendering results using commonly used
PSNR, LPIPS and SSIM metrics. To better evaluate the ren-
dering results from human perception, we also introduce a
recent metric, DreamSim (DS) [7], which is better aligned
with human visual perception by tuning large vision mod-
els on their collected dataset, as our evaluation metric. Be-
sides, for the People-Snapshot dataset where the test poses
are similar with training poses, we adopt FID [36] score to
evaluate the quality of animation results by comparing with
the original image sequence.

5.2. Comparison

Baselines. We take the recent works GART [20], iHu-
man [29] and HaveFun [43] as our baselines. GART is a
GS-based method, which represents the avatar using GS in



Methods | PSNRT SSIMt LPIPS| DS|

InstantAvatar (3 views) 16.13 0.8261 0.2534  0.2450
GART (3 views) 23.95 0.9375  0.0602  0.0785
ExAvatar (3 views) 22.59 0.9337 0.0632  0.0529
iHuman (3 views) 22.67 0.9271 0.0601 0.0733
Ours (3 views) 25.25 0.9506  0.0442  0.0408
InstantAvatar (6 views) 20.52 0.8949  0.1543  0.1582
GART (6 views) 25.52 0.9499  0.0495  0.0505
ExAvatar (6 views) 23.71 0.9422  0.0568  0.0443
iHuman (6 views) 24.43 0.9404  0.0417  0.0473
Ours (6 views) 26.26 0.9572  0.0412  0.0349
InstantAvatar (9 views) 23.92 0.9289  0.0966  0.1260
GART (9 views) 26.73 0.9610  0.0400  0.0215
ExAvatar (9 views) 24.61 0.9489  0.0536  0.0426
iHuman (9 views) 25.38 0.9486  0.0327  0.0276
Ours (9 views) 27.10 0.9637  0.0373  0.0220

Table 1: Quantitative results on People-Snapshot. We high-
light the first and second best results for each metric.

‘InstantAvatar GART iHuman  Ours

3 views 271.3 151.76 ~ 130.20 112.50
6 views 189.48 122.74 118.23 105.54
9 views 149.08 99.93 10492  95.79
Table 2: FID score of animation results on People-

Snapshot.

the canonical space. iHuman binds each Gaussian to the tri-
angle face of the human template, i.e., SMPLX, which can
reconstruct an animation-robust avatar from few frames of a
monocular video. HaveFun is a mesh avatar reconstruction
method from few-shot images, which can achieve robust
animation results. However, their method needs ground-
truth normal maps and depths, and the code of data pro-
cessing is unavailable, leading to the failure of conducting
comparisons on real dataset. To compare more methods,
we also take InstantAvatar [15] and ExAvatar [26] as the
baseline on People-Snapshot dataset, and compare 3DGS-
Avatar [33] on ZJU-MoCap dataset. Besides, we also com-
pare our method with LHM [34], a recent Gaussian avatar
reconstruction method, on People-Snapshot dataset, which
can be found in the supplemental document.

Quantitative comparison. Table 1 and Table 2 show the
quantitative results on People-Snapshot dataset. Given 3/6
images as inputs, our method can achieve best performance
on almost all metrics, which demonstrates the effectiveness
of our model on avatar reconstruction with limit input im-
ages. As the test poses are similar with the training poses,
with the number of input images increasing, the invisible
regions in the training images become less, but our method
still performs better than other methods on most metrics.
For LPIPS metric, our method is worse than iHuman, while
for DS metric, which is better aligned with human percep-
tion than LPIPS, our method performs better than iHuman.

Methods | PSNR+ SSIM{T LPIPS| DS

3DGS-Avatar (3 views) | 27.61 0.9531 0.0545  0.1689
GART (3 views) 28.79 0.9584  0.0513  0.1457
iHuman (3 views) 26.95 0.9484  0.0587 0.1370
Ours (3 views) 29.56 0.9663  0.0389  0.0982
3DGS-Avatar (6 views) | 28.47 0.9595  0.0441 0.1202
GART (6 views) 29.78 0.9655 0.0412  0.1037
iHuman (6 views) 27.97 0.9529  0.0561 0.1089
Ours (6 views) 30.18 0.9693 0.0365  0.0822
3DGS-Avatar (9 views) | 28.92 0.9625  0.0390  0.0996
GART (9 views) 30.32 0.9687  0.0371 0.0937
iHuman (9 views) 28.38 0.9562  0.1177  0.1014
Ours (9 views) 30.65 09714  0.0344  0.0778

Table 3: Quantitative results on ZJU-MoCap.

Methods ‘ PSNRT SSIMt1 LPIPS| DS

GART (4 views) 21.03 0.9268  0.0713  0.1304
HaveFun (4 views) | 21.83 0.9372  0.0508  0.0650
Ours (4 views) 21.89 0.9386  0.0533 0.0744

GART (8 views) 21.65 0.9332  0.0636 0.0899
HaveFun (8 views) 22.03 0.9380  0.0472  0.0599
Ours (8 views) 22.51 0.9426  0.0489  0.0574

Table 4: Quantitative results on FS-XHumans.

Besides, our method also achieves best FID score on anima-
tion results in unseen poses, which suggests our method can
generate robust animation results even using limited input
images. Table 3 presents the quantitative results on ZJU-
MoCap dataset. Our method achieves best performance on
all metrics in different settings, which validates the effec-
tiveness of our method. Table 4 shows the quantitative re-
sults on FS-XHumans. We can see that our model achieves
better results on pixel-level evaluation (better PSNR and
SSIM), but for the 4-views setting, both LPIPS and DS
scores are worse than HaveFun. This is because HaveFun
has utilized ground-truth normal maps and depth informa-
tion during training on FS-XHuman, which aids in recon-
struction from few-shot images but is unavailable in real-
world data.

Qualitative comparison. Figure 4 and Figure 5 show the
qualitative results obtained with varying numbers of input
images. Previous methods struggle to predict invisible re-
gions, resulting in noticeable artifacts in these areas. For
InstantAvatar, there are numerous floating regions when the
number of input images is limited. Compared to other meth-
ods, our approach effectively infers reasonable textures for
invisible regions by leveraging mesh guidance, particularly
when the input is limited. As shown in Figure 5, our re-
constructed avatar achieves more robust results for unseen
poses, particularly in regions invisible during training, such
as the armpit area in the third column. Similar conclusions
can be drawn from Figure 6, which provides qualitative



3 views

6 views

9 views

Ground Truth 3DGS-Avatar

Figure 6: Qualitative comparison on ZJU-MoCap test set.
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Figure 7: Qualitative comparison on FS-XHumans.

comparisons on the ZJU-MoCap dataset. Our model not
only recovers detailed textures in visible regions but also
achieves plausible results in invisible regions, where other
methods exhibit artifacts (the legs in the first row). For FS-
XHumans dataset, as shown in Figure 7, HaveFun generates
hallucinated appearances (the color of shoes) due to intro-
ducing diffusion priors, and struggles to model detailed tex-
tures (words in the second row). Besides, the results are not
good in the real data when the ground-truth normal maps
and depths are not available (see the supplemental materi-
als). GART can model better textures, but it produces arti-
facts due to limited training poses. Our method can model

detailed texture and achieve robust animation results due to
Gaussian splatting representation and CleanMask. More re-
sults can be found in the supplemental materials.

In addition, HaveFun [43] requires the ground-truth nor-
mal maps and depth maps, and the code for testing on real
data is not available. As a result, we are unable to per-
form comparisons with HaveFun on real-world data. To ad-
dress this limitation, we extracted the results for the People-
Snapshot dataset [2] from their demo video. Figure 8§
presents the qualitative comparisons using four input im-
ages. The results of HaveFun fail to recover correct color of

https://github.com/TIM2015YXH/HaveFun/issues/1
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Figure 9: Qualitative comparison of ablation study.

Methods | PSNRT SSIMt LPIPS| DS| FID|

w/o Mesh. | 26.94 0.9630  0.0374  0.0228 98.43
w/o Clean. | 26.80 0.9613 0.0372  0.0228 100.78
Ours 27.10 0.9637  0.0373  0.0220 94.51

Table 5: Comparison of ablation study on People-Snapshot.

the sweater due to the reliance on the robust but inaccurate
diffusion priors. Moreover, the hair and shoes have artifacts
due to the absence of ground-truth normal maps and depth
maps. In contrast, our method reconstructs a more faithful
and visually accurate avatar, benefiting from the robustness
of our approach.

5.3. Ablation Study

To validate the design of our method, we design several
ablation experiments.
The model without mesh guidance (w/o mesh.). We re-
move mesh avatar used in our method to validate the effec-
tiveness of mesh guidance.

1

Y

N
[

\
b 1)

Full w/o Mesh Mesh

!
A

Figure 10: Qualitative results of our mesh avatar. Here, w/o
Mesh means the full model with mesh avatar removed, and
Mesh means using mesh avatar alone.

The model without CleanMask (w/o clean.). We remove
the second stage to validate the segmentation-driven data
augmentation method.



Input image SAM Mask

Clean image

Figure 11: Qualitative results of SAM. Given the input im-
age containing artifacts (the first column), SAM can output
smooth and clean masks (the third column), which can be
used for artifacts removal (the fourth column).

Table 5 and Figure 9 show the quantitative and quali-
tative results, respectively. Without mesh guidance, the re-
sults have similar scores in SSIM and LPIPS, but have lower
performance in other metrics. This is because, as shown
in Figure 9, The model without mesh guidance fails to ac-
curately infer and inpaint invisible regions, resulting in in-
complete or unrealistic texture reconstruction, particularly
in occluded areas. As shown in Figure 9, the model with-
out CleanMask produces many artifacts during animation,
leading to poor FID score.

Besides, Figure 10 shows qualitative results of mesh
avatars. Though the results are blurry and smooth, the mesh
avatar can inpaint missing or invisible regions. This is be-
cause 1) the surface rendering avoids ambiguity in volume
rendering methods; 2) the position-aware color prediction
allows interpolation for invisible regions. However, the in-
painting process becomes challenging when the missing re-
gions are extensive, as illustrated in Figure 13.

Analysis of SAM. Our CleanMask approach is motivated
by the observation that the pre-trained Segmentation Any-
thing Model (SAM) [18] generates smooth, artifact-free
masks even when the input images contain artifacts. Here,
we present some results in Figure 11. We select two repre-
sentative poses containing artifacts for the Gaussian splat-
ting avatar. The first column shows the animation results of
the avatar from the first stage, and the second column shows
the output segmentation maps using [35] by querying “hu-
man”, “shirt” and “pants”. Though the results are not very
precise for different parts, the merged masks are smooth and
clean, which can be used to obtain the clean images in the

fourth column. This observation is noteworthy and serves
as the foundation for artifact removal, i.e., the motivation of
our CleanMask.

Results on Different Numbers of Input Images. Our
method achieves superior results with a limited number
of images. Figure 12 shows the PSNR and DS (Dream-
Sim [7]) scores for different numbers of images on People-
Snapshot dataset. The results improve as the number of in-
put images increases, but beyond 15 images, the improve-
ments become marginal. Across different numbers of input
images, our method consistently outperforms others, with
particularly significant advantages when using a small num-
ber of input images.

5.4. Failure Cases and Future Work

Although our method can inpaint invisible regions, it is
still difficult to achieve high-quality reconstruction from in-
put of only one or two images. Figure 13 shows the re-
sults when we adopt two images. For the regions of the
side body, the results of mesh avatar are not consistent with
the other views, which leads to blurry and unreasonable re-
sults. One possible solution is to adopt a human template
model with texture mapping, which is easy to inpaint us-
ing existing models [10], to represent the mesh avatar. Be-
sides, due to the limited number of input images, we do
not model the dynamic deformation, which means that the
animation results do not contain dynamic details. This is
a common challenge also for other works [29, 43] about
avatar reconstruction from monocular videos. A possible
direction to overcome this is to model a motion prior for
different clothes and poses, which can be used in avatar re-
construction from limited inputs.

6. Conclusion

In this paper, we propose CleanAvatar, a novel two-stage
framework for avatar reconstruction that leverages mesh
guidance and segmentation-driven augmentation to gener-
ate high-quality, artifact-free human avatars from limited
images. Experiments on three public datasets validate that
our method can not only reduce invisible regions in the
training images, but can also achieve artifacts-free anima-
tion results.
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