
AutoSketch: VLM-assisted Style-Aware Vector Sketch Completion
HSIAO-YUAN CHIN∗, National Taiwan University, Taiwan
I-CHAO SHEN∗†, The University of Tokyo, Japan
YI-TING CHIU, National Taiwan University, Taiwan
ARIEL SHAMIR, Reichman University, Israel
BING-YU CHEN†, National Taiwan University, Taiwan

input
sketch

input
prompt

completed
sketch

(a) one-step sketch completion (b) iterative sketch completion

“a sketch of a woman
beside the beach”

“a sketch of a man
using the mixer
in the kitchen”

“a sketch of a woman
cha�ing with a man

in the park”

complete edit sketch complete

(add a bird)

“a sketch of a dog
playing balls

with another dog”

Fig. 1. (a) Given an input prompt and a sketch, our method completes the input sketch by accurately representing the input prompt and maintain the style of
the input partial sketch. (b) Users iteratively employ AutoSketch to create a complex sketch. For example, after the first completed sketch is generated, the
user decide to retain the strokes representing the man and woman, draw a bird, and our method completes the sketch by adding strokes depicting the trees
and grass. (The blue and green strokes denote the first and second iterations of the input sketches.)

Sketches are an important medium of expression and recently many works
concentrate on automatic sketch creations. One such ability very useful for
amateurs is text-based completion of a partial sketch to create a complex
scene, while preserving the style of the partial sketch. Existing methods
focus solely on generating sketch that match the content in the input prompt
in a predefined style, ignoring the styles of the input partial sketches, e.g., the
global abstraction level and local stroke styles. To address this challenge,
we introduce AutoSketch, a style-aware vector sketch completion method
that accommodates diverse sketch styles and supports iterative sketch com-
pletion. AutoSketch completes the input sketch in a style-consistent man-
ner using a two-stage method. In the first stage, we initially optimize the
strokes to match an input prompt augmented by style descriptions extracted
from a vision-language model (VLM). Such style descriptions lead to non-
photorealistic guidance images which enable more content to be depicted
through new strokes. In the second stage, we utilize the VLM to adjust
the strokes from the previous stage to adhere to the style present in the
input partial sketch through an iterative style adjustment process. In each
iteration, the VLM identifies a list of style differences between the input
sketch and the strokes generated in the previous stage, translating these
differences into adjustment codes to modify the strokes. We compare our

∗Both authors contributed equally to this research.
†Joint corresponding author.

Authors’ Contact Information: Hsiao-Yuan Chin, National Taiwan University, Taiwan,
r12725026@ntu.edu.tw; I-Chao Shen, The University of Tokyo, Japan, jdilyshen@gmail.
com; Yi-Ting Chiu, National Taiwan University, Taiwan, r13922018@csie.ntu.edu.tw;
Ariel Shamir, Reichman University, Israel, arik@idc.ac.il; Bing-Yu Chen, National
Taiwan University, Taiwan, robin@ntu.edu.tw.

SA Conference Papers ’25, December 15–18, 2025, Hong Kong, Hong Kong
© 2025 Copyright held by the owner/author(s). Publication rights licensed to ACM.
This is the author’s version of the work. It is posted here for your personal use. Not for
redistribution. The definitive Version of Record was published in SIGGRAPH Asia 2025
Conference Papers (SA Conference Papers ’25), December 15–18, 2025, Hong Kong, Hong
Kong, https://doi.org/10.1145/3757377.3763828.

method with existing methods using various sketch styles and prompts, per-
form extensive ablation studies and qualitative and quantitative evaluations,
and demonstrate that AutoSketch can support diverse sketching scenarios.

CCS Concepts: • Computing methodologies→ Computer graphics.

Additional Key Words and Phrases: Vector Sketches, Sketch Completion,
Style-Aware, Scene Completion, Bézier Curves

ACM Reference Format:
Hsiao-Yuan Chin, I-Chao Shen, Yi-Ting Chiu, Ariel Shamir, and Bing-Yu
Chen. 2025. AutoSketch: VLM-assisted Style-Aware Vector Sketch Comple-
tion. In SIGGRAPH Asia 2025 Conference Papers (SA Conference Papers ’25),
December 15–18, 2025, Hong Kong, Hong Kong. ACM, New York, NY, USA,
11 pages. https://doi.org/10.1145/3757377.3763828

1 Introduction
Sketching has long been a key form of visual expression that rapidly
communicates ideas and expresses concepts. Even people with little
experience can easily sketch simple objects and ideas. However,
creating sketches that depict complex scenes remains a significant
challenge for many. Typically, individuals begin sketching by creat-
ing a rough partial sketch but often struggle to turn this into a final
complex sketch that maintains a unique style.

Recent text-based sketch generation methods [Jain et al. 2023; Qu
et al. 2023; Xing et al. 2023] leverage user-provided text prompts
to generate intricate sketches either from scratch or progressively.
However, these methods do not adequately consider input partial
sketches, thus creating two major issues. First, they often generate
redundant strokes that duplicate elements already present in the
input partial sketch. Second, they ignores the styles of the input
sketch, e.g., the global level of abstraction and the local stroke styles,
such as stroke thickness, smoothness, curvature, opacity. Therefore,

SA Conference Papers ’25, December 15–18, 2025, Hong Kong, Hong Kong.

HTTPS://ORCID.ORG/0009-0004-7313-5528
HTTPS://ORCID.ORG/0000-0003-4201-3793
HTTPS://ORCID.ORG/0009-0004-0937-2705
HTTPS://ORCID.ORG/0000-0003-4201-3793
HTTPS://ORCID.ORG/0000-0003-0169-7682
https://orcid.org/0009-0004-7313-5528
https://orcid.org/0000-0003-4201-3793
https://orcid.org/0009-0004-0937-2705
https://orcid.org/0000-0003-4201-3793
https://orcid.org/0000-0003-0169-7682
https://doi.org/10.1145/3757377.3763828
https://doi.org/10.1145/3757377.3763828

2 • Hsiao-Yuan Chin, I-Chao Shen, Yi-Ting Chiu, Ariel Shamir, and Bing-Yu Chen

the styles of the generated strokes do not align with those of the
input partial sketch.
To address these issues, we propose AutoSketch, a novel style-

aware vector sketch completion method that takes a text prompt
and a partial sketch as input. Our method completes the partial
sketch by generating strokes that illustrate missing elements or
concepts according to the prompt, while preventing the creation of
redundant strokes and ensuring that the style aligns with that of
the input sketch.

We observed that the stroke optimization method using fixed text
augmentation adopted by [Jain et al. 2023; Qu et al. 2023; Xing et al.
2023] often results in unsatisfied completed sketches. In terms of
content, the generated guidance image often contains blurred area or
lacks clear boundaries, leading to some elements being overlooked
during the sketch generation process. In terms of style, the use
of a single type of stroke parameterization causes the style of the
generated strokes to misalign with those of the input sketch.

Based on this observations, we utilize a pretrained vision-language
model (VLM) along with a stroke optimization process. In the first
stage, we augment the input prompt with VLM-generated style
descriptions based on the input partial sketch. This augmentation
allows ControlNet [Zhang et al. 2023] to generate guidance images
that exhibit some non-photorealistic rendering styles for stroke
generation. Next, we optimize the strokes based on these guidance
images. To resolve the redundant strokes issue, we introduce an
overlap penalty to ensure that the generated strokes do not overlap
with those of the input partial sketch. In the second stage, we employ
the VLM to iteratively adjust the styles of the optimized sketch. We
task the VLM with identifying style differences between the input
sketch and the most recent optimized sketch. Then, we ask the VLM
to generate adjustment code based on the identified style differences
and apply them to the latset optimized sketch to obtain the final
sketch. While the VLM typically adjusts styles effectively in one
iteration, this iterative process ensures effective style adjustment
due to the inherent instability of the VLM.

The advantage of using a VLM for style adjustment, compared to
existing optimization-based methods, is its ability to support both
continuous and discrete adjustments, including stroke deletion or
splitting. Although prior work [Cai et al. 2023; Vinker et al. 2024]
has shown that it is technically feasible to prompt a pretrained VLM
to generate adjusted strokes directly, these methods are constrained
by token limitations, which prevents them from generating com-
plex sketches with a large number of strokes. By generating style
adjustment code with the VLM, we can overcome these challenges,
resulting in a more stylistically consistent sketch without losing
essential content.
We compare our results with those of existing methods across

various sketch styles and prompts. Extensive quantitative and quali-
tative evaluations reveal that the completed sketches generated by
ourmethod better preserve the style of the input partial sketches and
more accurately represent the contents specified by the prompts.

2 Related Work

2.1 Vector Sketch Generation
Previous studies [Eitz et al. 2012; Ha and Eck 2018; Sangkloy et al.
2016] have collected sketch datasets of amateur sketches that sought
to realistically depict everyday objects, while OpenSketch [Gryadit-
skaya et al. 2019] contains professional sketches of product designs.
Existing studies used these sketch datasets and various deep learn-
ing models [Ha and Eck 2018; Lin et al. 2020; Ribeiro et al. 2020;
Zhou et al. 2018] to generate sketch sequences. However, given their
reliance on these sketch datasets, such methods generally generate
sketches of only simple objects.
Recently, novel methods [Frans et al. 2022; Gal et al. 2024; Qu

et al. 2023; Vinker et al. 2023, 2022; Xing et al. 2023] employs the
“synthesis-through-optimization” paradigm have emerged. These
methods typically optimize stroke geometry and appearance using
priors derived from large pretrained models such as CLIP [Radford
et al. 2021], and text-to-image [Rombach et al. 2022] and text-to-
video [Wang et al. 2023] models. However, these methods either cre-
ate sketches from scratch to fit the input prompt or modify sketches
based on the updated prompt [Mo et al. 2024] in a predefined style,
while neglecting the styles present in the input sketches.

2.2 Sketch Styles
In the past works, style is often discussed in terms of two compo-
nents: local curve level and global abstraction level. At the local
curve level, style is characterized by a combination of geometry
(shape) and appearance (e.g., strokes and textures). For example,
Li et al. [2013] identified geometric curve styles in a set of shapes,
while Berger et al. [2013] analyzed both the geometric and appear-
ance sketch styles, as well as global abstraction level for a specific
artist in portrait sketching. Recently, Vinker et al. [2023] introduced
a method for generating scene sketches that vary in levels of ab-
straction. Our method considers both the global abstraction level
and the local geometric and appearance styles of sketches, ensuring
that the style aligns between the input sketch and generated sketch.

2.3 LLM-based Sketch and SVG Editing
Recent advancements in large language models (LLMs) have enabled
extensive research on vector graphic generation and editing [Cai
et al. 2023; Nishina and Matsui 2024; Wu et al. 2024; Zou et al. 2024].
This progress has led to the development of new benchmarks and
frameworks aimed at evaluating enhancing the capabilities of LLMs.
For example, StarVector [Rodriguez et al. 2025] presents a multi-
modal LLM designed to vectorize raster images. Other previous
works [Tang et al. 2024; Wu et al. 2023; Xing et al. 2024] incorporate
specialized tokenization methods or modular architectures to im-
prove LLMs’ understanding of SVG structures, enabling advanced
tasks such as text-guided icon synthesis and SVG manipulation.
However, many of these methods rely on additional large-scale
training data to finetuning LLMs. In contrast, SketchAgent [Vinker
et al. 2024] and Chat2SVG [Wu et al. 2024] use off-the-shelf LLMs
without finetuning but is limited to simple concepts with a small
number of strokes. Our method, without any finetuning, can han-
dle partial sketches involving a larger number of strokes, enabling
complex scenes with complex object interactions and compositions.

SA Conference Papers ’25, December 15–18, 2025, Hong Kong, Hong Kong.

AutoSketch: VLM-assisted Style-Aware Vector Sketch Completion • 3

(c) Style di�erence detection and code generation“a sketch of a
flower on the table

with the curtained window”

“a sketch of a flower on the table

with the curtained window,
delicate, minimal, thin, elegant”

Stage 1: Content-centric sketch completion Stage 2: VLM-based sketch style adjustment

(a) Prompt
augmentation

(b) Stroke optimization
for completion

ControlNet

augmented prompt
completed sketch

intermediate sketch
VLM

Fig. 2. Overview of our method. Given a user-provided prompt Pinput and a partial sketch Sinput, our method first (a) stylizes the input prompt by
augmenting it using style descriptions generated by the VLM (bold text). Using the augmented prompt, the method then performs (b) stroke optimization to
generate strokes that fill the missing regions, thus ensuring that the intermediate sketch can fully represents the content of the input prompt. To align the
styles of the intermediate sketch and the input sketch, we (c) iteratively instruct the VLM to identify style differences and translate them into style adjustment
codes that modifies the strokes of the intermediate sketch. Finally, we obtain a final completed sketch.

3 Overview
In Figure 2, we illustrate the overview of our method. Our method
takes as input a text prompt Pinput and a partial sketch Sinput. The
text prompt describes the content to be illustrated in the completed
sketch, and the input partial sketch represents only partial con-
tent described in the prompt. The output is a completed sketch
Scomplete = Sinput ∪Sopt that fully represents the content of Pinput
in a coherent style. Our method has two stages: content-centric sketch
completion and sketch style adjustment.

In the first stage, the goal is to optimize a set of parametric strokes
that, when combined with the input partial sketch, ensure that the
complete sketch represents the content of Pinput without consid-
ering the sketch styles. First, we augment Pinput by leveraging a
large vision-language model (VLM) to produce style descriptions of
the input partial sketch Sinput (Figure 2(a)). Then, we optimize the
parameters of a set of randomly sampled strokes using a diffusion
prior conditioned on the augmented text prompt (Figure 2(b)) and
obtains an intermediate sketch.

In the second stage, the goal is to adjust the styles of the interme-
diate sketch to achieve a cohesive look throughout the completed
sketch. We task the VLM to perform a style adjustment on the
intermediate sketch. The VLM begins with identifying the style
differences between strokes in the input sketch and the optimized
strokes. The VLM then generates an adjustment code based on the
detected style differences. We then apply the adjustment code to the
intermediate sketch. We instruct the VLM to focus on differences in
global abstraction levels and local stroke styles. In most of the situa-
tion, the VLM effectively identifies style differences and translates
them into adjustment codes. However, it occasionally overlooks
some differences when creating these codes. To resolve this issue,
we repeat this process until the sketches are no longer updated.

4 Stage 1: Content-centric Sketch Completion
Inspired by previous works [Vinker et al. 2023; Xing et al. 2023],
we optimize the parameters of a group of strokes by leveraging the
prior of a pretrained text-to-image (T2I) model. Unlike previous
works, our method employs a user-provided partial sketch Sinput as

an additional input. Therefore, we employ a conditional T2I model
(e.g., ControlNet Scribble1) to optimize the stroke parameters.

4.1 Prompt Augmentation
Although the conditional T2I model generates images that match
the input text prompt Pinput, we observed that these images are
often unsuitable for directly generating strokes. The main reason
is that the T2I model generates images in a photorealistic style,
which tends to include many blurs and lacks clear boundaries. Pre-
vious SDS-based methods [Jain et al. 2023; Qu et al. 2023] have
attempted to enhance sketch generation by augmenting the input
prompt with a fixed term to promote a more sketch-like style. Such
augmentation works effectively because they focus on a single type
of sketch style. However, since our method needs to accommodate
input sketches with various styles, using a fixed augmentation to
promote non-photorealistic styles, is not effective. To address this
issue, we augment the input prompt Pinput with some style descrip-
tions using the VLM based on the input partial sketch (Figure 2(a)).
Specifically, we render the input partial sketch Sinput into a raster
image and then ask the VLM to generate textual descriptions captur-
ing specifically the global level of abstraction and local stylistic cues
of the rendered image. Then, we augment these style descriptions
to the input prompt to obtain the augmented prompt.

4.2 Stroke Optimization for Completion
Using the augmented prompt, we generate strokes that fill the empty
regions of the input partial sketch. We define the set of 𝑛 strokes to
be optimized as Sopt = {𝑠1, . . . , 𝑠𝑛}, and each stroke is defined as:

𝑠𝑖 =

{
{𝑝 𝑗

𝑖
}4𝑗=1, 𝑜𝑖 ,𝑤𝑖

}
, (1)

where {𝑝 𝑗
𝑖
}4
𝑗=1 are the control points of a cubic Bézier curve, 𝑜𝑖

denotes an opacity attribute, and𝑤𝑖 denotes the stroke width. Ini-
tially, we generate a guidance image Iguide using a conditional T2I
model based on the augmented prompt and the rendered sketch
image. Then, we optimize all parameters of Sopt to obtain a sketch
that is consistent with the guidance image Iguide (Figure 3). For

1https://huggingface.co/xinsir/controlnet-scribble-sdxl-1.0

SA Conference Papers ’25, December 15–18, 2025, Hong Kong, Hong Kong.

https://huggingface.co/xinsir/controlnet-scribble-sdxl-1.0

4 • Hsiao-Yuan Chin, I-Chao Shen, Yi-Ting Chiu, Ariel Shamir, and Bing-Yu Chen

Init State

iteration 0

iteration 50 iteration 200

iteration 1000

(a) partial sketch

(b) guidance image (d) intermediate sketch(c) stroke optimization

Fig. 3. Overview of stroke optimization. Given (a) the input partial
sketch and the augmented prompt, our method generates (b) the guidance
image. Then, our method (c) iteratively updates the position, opacity, and
width of each stroke so the content in the guidance image is depicted
faithfully. This ensures that (d) the resulting intermediate sketch aligns with
the guidance image visually but does not overlap with the input partial
sketch.

initialization, we randomly place all strokes on the canvas. At itera-
tion 𝑡 , we rasterize the strokes using a differentiable rasterizer 𝑅 to
generate the raster sketch: Isketch = 𝑅(Scomplete), and we optimize
the following objective function when updating the strokes:

𝐿all = 𝛼 (1 − sim
(
𝜙vis (Isketch), 𝜙vis (Iguide)

)
)

+ 𝛽 (𝐿𝑃𝐼𝑃𝑆 (Isketch,Iguide)) + 𝛾
∑︁
𝑥𝑘 ∈x

1 [M(𝑥𝑘) = 1] (2)

where 𝛼, 𝛽,𝛾 control the relative importance of the three terms.
The first term measures the visual alignment between the guidance
image Iguide and the raster sketch Isketch using the CLIP visual
encoder 𝜙img (·), where sim(x, y) = x·y

∥x∥ · ∥y∥ is the cosine similarity.
Additionally, we further minimize the LPIPS loss to enhance the
visual similarity of Isketch and Iguide.

M

si

To ensure that the strokes do not overlap
with those of the input partial sketch Sinput,
we introduce an overlap penalty loss. Specif-
ically, we first define a binary mask M that
encodes the regions in Sinput where strokes
already exist:

M(𝑥) =
{
1, if pixel 𝑥 belongs to strokes in Sinput,

0, otherwise.
(3)

Then, we sample 10 points on each stroke 𝑠𝑖 ∈ Sopt. For each
sample point 𝑥𝑘 , if that point falls in 𝑀 (the filled black circles in
the inset), we introduce a penalty, where 1[·] in Equation 2 is the
indicator function.
Our objective function 𝐿all is very similar to the one used in

DiffSketcher [Xing et al. 2023], with the exception that we have
discarded the augmentation SDS (ASDS) loss. The reason for this is
that we found ASDS loss contributed very little to the optimization,
as indicated by the results shown in DiffSketcher paper and their
released code. Therefore, to reduce computation time and focus
on achieving better sketch completion result, we opted to use the
overlap penalty loss instead of the ASDS loss.

After optimizing 𝐿all, we obtain the intermediate sketch by com-
bining the optimized strokes with those of input partial sketch.

Style di�erence detection and code generationPreamble

Augmented prompt
“a sketch of a dog playing

ball with another dog,
detailed, linear, realistic, clean”

SVG code of intermediate sketch

Task: Analyze the provided SVG sketch and the stylized
text prompt to adjust the stroke style…
Requirement: Do not modify blue line…
Python Code Structure: Use the following code structure to
implement your solution.
Parse SVG file
tree = ET.parse(input_svg_path)
root = tree.getroot()
….

VLM
thickness: Blue strokes are thinner compared to
black strokes.
opacity: Blue strokes appear more opaque than black
strokes, which seem slightly transparent.
smoothness: Blue strokes are smoother, while black
strokes have more wobble and irregularities.

…

Fig. 4. Overview of VLM-based sketch style adjustment. The complete
system prompt we provided to the VLM consists of a preamble, an aug-
mented prompt, and the SVG code of the intermediate sketch. We input this
information into the VLM, which then generates detected style differences
and adjustment codes to iteratively modify the styles of the sketch.

The strokes in the intermediate sketch contain the overall content
described in the input prompt, but the styles are not coherent yet.

5 VLM-based Sketch Style Adjustment
After optimizing the strokes in Section 4.2, we have filled in the
empty areas. However, this does not guarantee that the strokes in
the intermediate sketch will exhibit global stylistic coherence. The
wide variety of sketch styles complicates the process of defining
appropriate parameterizations that can capture all potential styles.
Moreover, stroke optimization can only adjust stroke parameters
continuously and cannot accommodate discrete style changes, such
as stroke deletion or simplification. To address these challenges,
we instruct the VLM to guide the style adjustment of the interme-
diate sketch. Specifically, we represent the intermediate sketch in
SVG format and request the VLM to modify the SVG to achieve
the desired style adjustments. However, several challenges arise
due to the limitations of existing VLMs. First, existing VLMs can
handle only a limited number of tokens, restricting the number of
strokes that can be included in the intermediate sketch. Second,
these VLMs often hallucinate, i.e., they may generate strokes absent
in the intermediate sketch which does not match the input prompt.

To address these issues, we propose an iterative style differences
detection and code generation process (Figure 4). In each iteration,
we ask the VLM to generate a list of style differences between the
strokes from the previously optimized sketch with those in the input
sketch. Next, we instruct the VLM to generate style adjustment
codes based on the identified style differences. Then, we apply the
adjustment codes to the previously optimized sketch to obtain the
final sketch. This process will be terminated until sketches are no
longer updated.

Style difference detection. In this step, we provide the VLM with
the following information:

• A preamble that contains the instructions for the task.
• A rendered image of the intermediate sketch. In this image,
the strokes of the input sketch will be rendered in blue and
others will be in black.

• The intermediate sketch in SVG format.

SA Conference Papers ’25, December 15–18, 2025, Hong Kong, Hong Kong.

AutoSketch: VLM-assisted Style-Aware Vector Sketch Completion • 5

In the preamble, we clearly outline the types of style differences
we encourage the VLM to identify, including the global levels of
abstraction and local stroke styles. For local stroke styles, we ask the
VLM to focus on stroke thickness, smoothness, curvature, opacity.
Figure 5 shows an example list of detected style differences.

thickness: Black strokes vary in thickness, with an average of about 4-5
times thicker than blue strokes, which have a consistent stroke-width of 0.5.
opacity: Black strokes have significantly lower opacity, with most near 0.05
compared to blue strokes at 1.0.

global abstraction level: Blue strokes depict more detail and crisp
representation, while black strokes provide a looser, sketchier abstraction
with denser detail.
other: The overall composition demonstrates that blue lines have a wider
spacing between them, creating a cleaner, less clu�ered appearance
compared to the dense and closely packed black lines.

…

Fig. 5. An example list of detected style differences.

Adjustment code generation. In this step, we provide the VLM
with the following information:

• A preamble that contains the instructions for the task.
• A list of detected style differences.
• The intermediate sketch in SVG format..
• The augmented text prompt.
• A snippet of the skeleton style adjustment code.

The VLM then completes the missing part of the skeleton code
snippet, yielding a style adjustment code that specifies how to adjust
the newly generated strokes to address the differences detected in
the previous step. For example, based on the detected differences in
Figure 5, the VLM generates the following adjustment code:

def adjust_stroke_style(path_data):
for elem in parent.findall('.//svg:path', namespace):

style = elem.attrib
if 'stroke' in style and style['stroke'] != 'rgb(51, 102, 178)':

Get current attributes
stroke_width = float(style.get('stroke-width', 2.0))
stroke_opacity = float(style.get('stroke-opacity', 1.0))
1. Remove extreme attributes
if stroke_opacity < 0.12:

parent.remove(elem)
continue

2. Adjust stroke width
style['stroke-width'] = str(max(0.5, min(stroke_width,
given_sketch_style['stroke-width'] * 0.9)))
3. Adjust opacity
style['stroke-opacity'] = str(min(max(stroke_opacity, 0.95), 1.0))
4. Adjust path to increase distance (shift position slightly)
d = style.get('d', '')
new_d = re.sub(

r"([MLC])\s*(-?\d+\.?\d*)\s*(-?\d+\.?\d*)",
lambda match: f"{match.group(1)}
{float(match.group(2)) + 2} {float(match.group(3)) + 2}", d)

style['d'] = new_d

Please see supplement for the details of the preamble we provided
to the VLM and other adjustment codes generated by the VLM. We
show an example of iterative style adjustment in Figure 6.

6 Experiment

6.1 Implementation Details
In this work, we use the GPT-4o model [Hurst et al. 2024] as the
VLM, which extracts style descriptions and generates style adjust-
ment codes. We implement the first stage of our method using

(a) intermediate sketch (b) 1st round adjustment (c) 2nd round adjustment

Fig. 6. The iterative style adjustment process. Some style differences in
the (a) intermediate sketch, like strokewidth and opacity in red areas, cannot
be fully adjusted after (b) one iteration. These differences are addressed
during (c) the second round of adjustment.

PyTorch [Paszke et al. 2019] and use the Adam [Kingma and Ba
2015] optimizer to optimize the strokes. We use 512 strokes for
stroke optimization for all cases. During the style adjustment stage,
some strokes are removed based on detected style differences, re-
sulting in completed sketches that vary in density–some appearing
more sparse while others are denser. In terms of computation time,
it takes approximately 5 minutes to optimize 1000 iterations, while
the second stage requires around 3 minutes. For all computations,
we used a PC with an Intel i7CPU and an NVIDIA RTX 4080 GPU.

The input sketches used in our experiment come from three
sources: sketches generated using CLIPasso [Vinker et al. 2022],
trace sketches found public website, and selected design sketches
from the OpenSketch dataset [Gryaditskaya et al. 2019].

6.2 Comparison with Existing Methods
We qualitatively and quantitatively compare our method to SDS-
based sketch generation methods, including SketchDreamer [Qu
et al. 2023] and DiffSketcher [Xing et al. 2023]. For DiffSketcher, we
replace the original vanilla Stable Diffusion using the ControlNet
Scribble2 used in SketchDreamer. In Figure 7, we show the results
generated by our method and all compared methods using identical
user-provided partial sketch and stylized prompts. The results gen-
erated by SketchDreamer and DiffSketcher often place numerous
strokes onto the input partial sketches instead of using them to illus-
trate desired content. It reduce the amounts of strokes that can be
used to depict desired content, and often results in missing content
and low visual quality. We further reduce the overlapping strokes by
using the input sketch mask. However, eliminating these overlaps
does not enhance the content being represented. More importantly,
the styles of generated sketches do not match the style of the in-
put sketches, resulting in inconsistencies in the final sketches. In
contrast, our method can generate strokes for depicting the desired
content more effectively because we introduce the overlap penalty
in Equation 2.
We further compared our method with Gemini Co-Drawing3

which is built on Gemini 2 native image generation. As shown
in Figure 7(e), although Gemini Co-Drawing can generate sketch
that aligns with the input prompt, both the content and style of
the input partial sketch are not well preserved. In contrast, our
method consistently completed sketches that faithfully represent
2https://huggingface.co/lllyasviel/control_v11p_sd15_scribble
3https://huggingface.co/spaces/Trudy/gemini-codrawing

SA Conference Papers ’25, December 15–18, 2025, Hong Kong, Hong Kong.

https://huggingface.co/lllyasviel/control_v11p_sd15_scribble
https://huggingface.co/spaces/Trudy/gemini-codrawing

6 • Hsiao-Yuan Chin, I-Chao Shen, Yi-Ting Chiu, Ariel Shamir, and Bing-Yu Chen

(h) Ours(c) SketchDreamer with mask(a) input sketch & augmented prompt

“a sketch of a goat in front of a farm,
elegant, fluid, minimalist, refined”

“a sketch of a man in the classroom,
whimsical, minimal,
expressive, dynamic”

“a sketch of owl in the living room,
minimalistic, abstract, bold, playful”

“a sketch of a woman beside the beach
minimalistic, clean, expressive, modern”

(d) Di�Sketcher (f) Gemini Co-Drawing (g) Ours (first stage)

“a man using the mixer in the kitchen
minimalist, detailed, precise, clean”

(b) SketchDreamer (e) Di�Sketcher with mask

Fig. 7. Comparison with existing methods. Given (a) the input sketch and the augmented prompt, (b, d) the results generated by SketchDreamer and
DiffSketcher wrongly place too many strokes at the input sketch region and fail to match the styles of the input sketch. (c, e) We further remove the overlapping
strokes using the input sketch mask to enhance the visual quality of their results. However, these results still exhibit misaligned styles and often contains less
desired content depicted in the input prompt. (e) Gemini Co-Drawing completes sketches that matches the prompt but fail to preserve the content and the
style of the input partial sketch. (f) The completed sketches generated by the first stage of our method avoids to place strokes overlap with input sketch, but
the styles of strokes are still inconsistent. (g) Our full method further adjusts the styles of all strokes to match the styles of the input sketches.

“a sketch of a cat beside the river,
simple, bold, playful, illustrative”

(e) Ours(b) SketchDreamer(a) input sketch & augmented prompt (c) Di�Sketcher (d) Gemini Co-Drawing

“a sketch of a car is driving on
a road in the mountains,

clean, minimalistic, sleek, dynamic”

Fig. 8. More comparison results. Given (a) the input sketch and the
augmented prompt, (b,c) the results generated by SketchDreamer and DiffS-
ketcher wrongly place too many strokes at the input sketch region and
therefore alter the input sketch style. (d) Gemini Co-Drawing completes
sketches that matches the prompt but fail to preserve the content and the
style of the input partial sketch. (e) Our full method further adjusts the
styles of all strokes to match the styles of the input sketches.

the contents of the input text prompts with consistent styles. We
show additional comparison results in Figure 8.

To further validate the effectiveness of our method in terms of
preserving the sketch styles and completing the content, we gather
an evaluation set containing 10 sketches and perform two types
of quantitative evaluation. First, we use commonly use visual and
text metrics to evaluate the performance of our method. However,
since these metrics are typically not used for evaluating the sketch
completion task and have their own limitation, we additionally
conduct an user evaluation which further validate our method.

Quantitative Evaluation using existing metrics. We used Dream-
Sim [Fu et al. 2023] andDINO [Caron et al. 2021] as the visual metrics
to measure the style consistencies and image similarities between
the input partial sketches and the generated completed sketches.
Meanwhile, we assess the alignment between the content of each
completed sketch and the input prompt using the VQA score [Lin
et al. 2024]. The VQA score measures prompt-image alignment on
compositional prompts more effectively than the CLIP score [Rad-
ford et al. 2021] and is more closely aligned with human judgement.
It is important to note that the visual metrics we used, including
DreamSim and DINO, measure both style and content similarity
rather than focusing solely on style. As a result, these metrics favor

SA Conference Papers ’25, December 15–18, 2025, Hong Kong, Hong Kong.

AutoSketch: VLM-assisted Style-Aware Vector Sketch Completion • 7

Visual Text

DreamSim↓ DINO↑ VQA score ↑

SketchDreamer 0.471 0.556 0.554
DiffSketcher 0.465 0.525 0.816

Gemini Co-Drawing 0.365 0.584 0.804
Our method 0.290 0.591 0.788

Our first stage 0.434 0.488 0.332
Our + Qwen3 0.305 0.578 0.781

Table 1. Quantitative evaluation results. We compare our method to
two SDS-based methods [Qu et al. 2023; Xing et al. 2023] and Gemini Co-
Drawing employing metrics that focus on visual and textual similarities. Our
method consistently outperforms the other methods for visual metrics and
achieves comparable performance with other methods on textual metric.
We highlight the first and second best results.

images that closely replicate the input sketch and leave the rest
blank, which goes against our goal of completing the sketch based
on the input prompt. Therefore, it is essential to assess the results
using both visual and text metrics.
As shown in Table 1, our method significantly outperforms the

other methods across all visual metrics and achieves a comparable
score on the text metric. We find that both the visual and text
metrics alone used in this evaluation do not accurately reflect the
preservation of the content and style from the input partial sketch,
nor do they assess the quality of the completed sketch. Regarding
the visual metric, Gemini Co-Drawing achieves a high DINO score,
but the input partial sketches are significantly altered. On the text
metric side, although both DiffSketcher and Gemini Co-Drawing
receive higher scores, the completed sketch either lack quality or
do not meet the preservation requirement necessary for our task.

User evaluation. We conducted a user evaluation to further vali-
date that our method generates sketches whose styles match those
in user-provided partial sketches and depict complete content in the
input prompt. We use the same evaluation set used in Section 6.2
generated by our method, SketchDreamer and DiffSketcher. We
chose to conduct user evaluations on these two methods without
Gemini Co-Drawing because it often alters the input partial sketch
significantly and only generates raster output. Participants evalu-
ated the quality of the generated completed sketches by conducting
pairwise comparisons. For each input sketch and prompt, we cre-
ated three comparative pairs, “Ours vs. SketchDreamer” and “Ours
vs. DiffSketcher”, resulting in 20 pairs for comparison. During each
comparison, two completed sketches were shown side by side in ran-
dom order, along with their inputs. Participants were asked to judge
the sketches based on two criteria: “How well they preserved the
styles of the input partial sketch” and “How effectively they depicted
the content of the input prompt”. Each comparison was evaluated
by 25 different participants. As shown in Table 2, the participants
preferred our method for both criteria.

To further evaluate AutoSketch, we recruited two amateur partic-
ipants to manually complete two sketches and the results are shown
in Figure 9. Participants were allowed to search for reference images

Style Content

Ours Others neither Ours Others neither

(a) vs. SketchDreamer 94.29 5.36 0.36 86.43 3.21 10.36
(b) vs. DiffSketcher 92.14 7.50 0.36 55.71 40.36 3.93

(c) vs. manual completion 76.79 23.21 0.0 50.00 44.64 5.36

Table 2. User evaluation results. Compared to the two SDS-based meth-
ods and manual completion, the participants consistently preferred the
completed sketches generated by our method in terms of both the style
preservation and content depiction criteria. (“Others” denote to the com-
paring methods.) We highlight the best result.

P1

“a sketch of a dog playing
balls with another dog”

P2

“a sketch of a woman cha�ing
with a man in the park”

Ours

Fig. 9. Comparison with manual sketch completion. We recruited two
amateurs tomanually complete the input partial sketch based on the prompt.
Ourmethod represents the subjects in the completed sketchmore accurately
and in a more cohesive style.

online while completing the sketches. We then conducted a user
evaluation using these examples and show the results in Table 2(c).
The user evaluation results indicate that our method obtained higher
ratings for style preservation and content depiction compared to hu-
man participants. Additionally, the participants noted that sketching
multiple subjects interacting with one another while aligning the
styles with the input sketch posed a particular challenge. Therefore,
they believe our method would be very helpful to allow users to
concentrate more on sketching the content they can create.

6.3 Diverse Sketch Scenario
Iterative sketch completion. Sketching is often an iterative process,

where users may want to introduce new details by adding new
strokes or modifying the original prompt. Our method enables users
to achieve iterative sketch completion by retaining some strokes
from the completed sketch and incorporating new ones (Figure 1(b)
and Figure 10(b)), or by updating the input prompt (Figure 10(a)).

Sketches with different prompts, or distinct sketches. Users may
seek to employ a variety of partial sketcheswhen generating sketches
that depict the same content in the input prompt. As shown in Fig-
ure 11(a), the completed sketches represent similar content but in
different styles. Additionally, as shown in Figure 11(b), the com-
pleted sketches created using different input prompts can represent
distinct contents but share a similar style.

SA Conference Papers ’25, December 15–18, 2025, Hong Kong, Hong Kong.

8 • Hsiao-Yuan Chin, I-Chao Shen, Yi-Ting Chiu, Ariel Shamir, and Bing-Yu Chen

complete “a sketch of a
flower on the table

with the curtained window”

(a)

update prompt complete

(b)

edit sketch

“a sketch of a
flower on the table”

“a sketch of a
flower in the room”

complete complete

(add a new flower)

Fig. 10. Examples of iterative sketch completion. After the initial sketch completion, the user can keep the strokes generated in the first completion
and (a) edit the sketch or (b) update the input prompt . Then, our method will complete the sketch once again to add more details. (The blue and green line
denotes the input partial sketch of the first and second iteration, respectively.)

“a sketch of girl walking in the park”
“a sketch of a lion

in the amusement park”

“a sketch of a lion on the island”

(a) Di�erent sketch styles (b) Di�erent prompts

Fig. 11. Various sketch scenarios. (a) Given the same prompt, our method
can generate completed sketches that depict the same content in differ-
ent styles that align with those of the user-provided partial sketches. (b)
Given the same partial sketch, our method can generate different completed
sketches representing the contents of various prompts.

6.4 Ablation Study

6.4.1 The effectiveness of the style adjustment stage We compared
the results generated by only the first stage to those of our full
method. As shown in Figure 7(f), while the results of the first stage
are both visually appealing and adequately represent the content of
the input prompt, the sketch styles do not alignwell with those of the
user-provided partial sketches. In contrast, as shown in Figure 7(g)
and Table 1, our full method completes sketches that are better
aligned with those of the user-provided sketch.

6.4.2 Generalization of VLMs Our method can utilize different
VLMs to augment the input prompt and adjust style. In Figure 12, we
show completed sketches using Gemini VLM [Team et al. 2023] and
a open-sourced VLM Qwen3 [Yang et al. 2025]. Also, we present
the quantitative results of using Qwen3 in Table 1. These results

guidance image completed sketch

“a sketch of a cat beside
the river in the grass,

bold, sketchy, expressive,
simplistic”

“a sketch of a cat beside
the river in the grass,

simple, minimalist, expressive,
dynamic”

partial sketch

augmented prompt

(a) GPT-4o

(b) Gemini

(c) Qwen3
“a sketch of a cat beside

the river in the grass,
 minimalist, bold, stylized,

abstract”

Fig. 12. VLM generalization example. Our method utilizing (a) GPT-4o,
(b) Gemini, and (c) Qwen3 as the VLM can generate completed sketches
that exhibit similar content and style based on the input partial sketch.

demonstrate that our method, utilizing different VLMs, can achieve
results comparable to our original method using GPT-4o.

6.4.3 The effectiveness of adaptive prompt augmentation Ourmethod
enhances the input prompt by incorporating VLM-generated style
descriptions of the input partial sketch, guiding the optimization of
the intermediate sketch. To assess its effectiveness, we compared
results generated using the input prompt, our proposed adaptive
augmented prompt, the input prompt, and a fixed augmented prompt
that appended “in non-photorealistic styles” to each input prompt.
Figure 13 shows that our adaptive augmented prompt generates
outputs that better reflect the desired content and align with input
sketch style. Additionally, the quantitative results in Table 3(a,b)
support these findings. We only report the text metric (VQA score),
as the visual metrics tend to favor results that include only the in-
put sketch with blank or minimal strokes, due to the content-style
entanglement issue discussed in Section 6.2.

6.4.4 The effectiveness of generating style adjustment code We found
that requesting the VLM to generate style adjustment code leads

SA Conference Papers ’25, December 15–18, 2025, Hong Kong, Hong Kong.

AutoSketch: VLM-assisted Style-Aware Vector Sketch Completion • 9

(c) adaptive augmentation

“a sketch of a lion in the amusement park,
cute, bold, playful, cartoonish”

(a) input prompt

“a sketch of a lion in the amusement park”

“a sketch of a goat in front of a farm”
“a sketch of a goat in front of a farm,

elegant, fluid, minimalist, refined”

(b) fixed augmentation

“a sketch of a lion in the amusement park,
non-photorealistic style”

“a sketch of a goat in front of a farm,
non-photorealistic style”

Fig. 13. Prompt augmentation ablation study examples. (a,b) The guidance image generated using the partial sketch and the original input prompt or
prompt with fixed augmentation contain unsuitable blurs and lack of clear boundaries. Thus, our method could not then generate a final completed sketch
that accurately depicted the complete content and the desired style. (b) In contrast, the prompt with adaptive augmentation created a guidance image that
allows our method to create a more completed sketch. (The bold text in the prompt are style descriptions generated by the VLM.)

(a) w/o aug (b) fixed aug (c) VLM edit (d) Ours

VQA score ↑ 0.443 0.532 0.331 0.788
Table 3. Quantitative results of ablation study. Our method completes
sketches with higher alignment with the input prompt compared to other
alternatives. We highlight the best result for each metric.

(a) intermediate sketch (b) VLM direct editing result (c) Our result

Fig. 14. Style adjustment code ablation study examples. Many impor-
tant strokes depicted in (a) the intermediate sketch are missing from (b) the
VLM direct editing results. In contrast, (c) our method effectively preserves
such strokes while adjusting the styles.

to sketches that are more consistent in styles and contain more
complete content than directly editing the SVG code. As shown
in Figure 14, some strokes may disappear if we request the VLM to

“a sketch of a woman in a bar,
minimalistic, abstract, line-focused”

input prompt and
partial sketch guidance image completed sketch

Fig. 15. Limitation. Our method cannot complete a sketch that accurately
depicts the content of the input prompt and maintains the styles of the
partial sketch with a broken guidance image generated by the ControlNet.

adjust styles directly. In contrast, the style adjustment code preserves
the content when adjusting the styles to match those of the user-
provided sketch. Similar quantitative result is observed in Table 3(c).
We also only report the results of VQA score because of the same
reason as Section 6.4.3.

7 Limitations and Future Work
Reliance on large pretrained models. Our method relies on two

pretrained models: ControlNet for generating the guidance images
and a VLM for augmenting the input prompt and create style adjust-
ment codes. Consequently, these models may occasionally generate
unsatisfactory results. As shown in Figure 15, if the guidance image
lacks the specified content, our method cannot generate strokes
that depict the desired content. We will explore finetuning both
ControlNet and the VLM to increase the robustness of our method.

Non-interactive generation. Our current method cannot gener-
ate completed sketch in real-time, which limits its application for
interactive sketch completion. We will explore possible speedup

SA Conference Papers ’25, December 15–18, 2025, Hong Kong, Hong Kong.

10 • Hsiao-Yuan Chin, I-Chao Shen, Yi-Ting Chiu, Ariel Shamir, and Bing-Yu Chen

options, such as reducing optimization steps, lowering the number
of stroke samples to minimize inside/outside checks (Equation 3),
and running the VLM locally.

Does not support texture styles. Texture is a popular artistic styles,
but our current adjustment method struggles to distinguish between
strokes for geometry and those for texture. We plan to classify these
strokes and apply different style adjustment methods.

8 Conclusion
In this paper, we introduce AutoSketch, a style-aware vector sketch
completion method that accommodates diverse sketch styles by
leveraging a pretrained VLM. Our method allows users to input a
sketch and automatically completes any missing content based on
the specified prompt in a coherent style. Additionally, users can ad-
just strokes in the input sketch, and our method will adjust the styles
of the remaining strokes to match the adjustments. We demonstrate
that the style descriptions extracted by the VLM from the input
sketch enable our method to accurately complete the sketch regard-
ing the desired content. Furthermore, the style differences identified
by the VLM between strokes enable our method to adjust the styles
of strokes and achieve cohesive style. Extensive experiment results
indicate our method is effective across various sketch scenarios.

Acknowledgments
We thank Chi-Lan Yang for brainstorming the idea of this project,
Zhongyi Zhou for sharing the experiences with the use of LLM, and
the anonymous reviewers for their valuable feedback. This work
was supported in part by the JSPS Grant-in-Aid JP23K16921, Japan,
the National Science and Technology Council (NSTC), Taiwan (un-
der NTSC 114-2221-E-002-218-MY3, 113-2634-F-002-007, and 114-
2218-E-002-006) and the Center of Data Intelligence: Technologies,
Applications, and Systems at National Taiwan University (NTU)
(114L900902) funded through the Featured Areas Research Cen-
ter Program and NTU Core Consortium Project (114L8922), under
the Higher Education Sprout Project by the Ministry of Education
(MOE), Taiwan.

References
Itamar Berger, Ariel Shamir, Moshe Mahler, Elizabeth Carter, and Jessica Hodgins. 2013.

Style and abstraction in portrait sketching. ACM Transactions on Graphics (TOG) 32,
4 (2013), 1–12.

Mu Cai, Zeyi Huang, Yuheng Li, Utkarsh Ojha, Haohan Wang, and Yong Jae Lee. 2023.
Leveraging Large Language Models for Scalable Vector Graphics-Driven Image
Understanding. arXiv preprint arXiv:2306.06094 (2023).

Mathilde Caron, Hugo Touvron, Ishan Misra, Hervé Jégou, Julien Mairal, Piotr Bo-
janowski, and Armand Joulin. 2021. Emerging properties in self-supervised vision
transformers. In Proceedings of the IEEE/CVF international conference on computer
vision. 9650–9660.

Mathias Eitz, James Hays, and Marc Alexa. 2012. How Do Humans Sketch Objects?
ACM Trans. Graph. (Proc. SIGGRAPH) 31, 4 (2012), 44:1–44:10.

Kevin Frans, Lisa Soros, and Olaf Witkowski. 2022. CLIPDraw: Exploring Text-to-
drawing Synthesis Through language-Image Encoders. Advances in Neural Informa-
tion Processing Systems 35 (2022), 5207–5218.

Stephanie Fu, Netanel Tamir, Shobhita Sundaram, Lucy Chai, Richard Zhang, Tali
Dekel, and Phillip Isola. 2023. DreamSim: Learning New Dimensions of Human
Visual Similarity using Synthetic Data. In Advances in Neural Information Processing
Systems, Vol. 36. 50742–50768.

Rinon Gal, Yael Vinker, Yuval Alaluf, Amit Bermano, Daniel Cohen-Or, Ariel Shamir,
and Gal Chechik. 2024. Breathing Life Into Sketches Using Text-to-Video Priors. In
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition.
Accepted.

Yulia Gryaditskaya, Mark Sypesteyn, Jan Willem Hoftijzer, Sylvia Pont, Fredo Durand,
and Adrien Bousseau. 2019. OpenSketch: A Richly-Annotated Dataset of Product
Design Sketches. ACM Transactions on Graphics (Proceedings of SIGGRAPH Asia) 38,
6 (2019), 232.

David Ha and Douglas Eck. 2018. A Neural Representation of Sketch Drawings. In Proc.
ICLR.

Aaron Hurst, Adam Lerer, Adam P Goucher, Adam Perelman, Aditya Ramesh, Aidan
Clark, AJ Ostrow, Akila Welihinda, Alan Hayes, Alec Radford, et al. 2024. Gpt-4o
system card. arXiv preprint arXiv:2410.21276 (2024).

Ajay Jain, Amber Xie, and Pieter Abbeel. 2023. VectorFusion: Text-to-SVG by Abstract-
ing Pixel-Based Diffusion Models. In Proc. CVPR. 1911–1920.

Diederik P. Kingma and Jimmy Ba. 2015. Adam: A Method for Stochastic Optimization.
In Proc. ICLR. http://arxiv.org/abs/1412.6980

Honghua Li, Hao Zhang, YanzhenWang, Junjie Cao, Ariel Shamir, and Daniel Cohen-Or.
2013. Curve Style Analysis in a Set of Shapes. In Computer Graphics Forum, Vol. 32.
Wiley Online Library, 77–88.

Hangyu Lin, Yanwei Fu, Xiangyang Xue, and Yu-Gang Jiang. 2020. Sketch-BERT:
Learning Sketch Bidirectional Encoder Representation from Transformers by Self-
supervised Learning of Sketch Gestalt. In Proc. CVPR. 6758–6767.

Zhiqiu Lin, Deepak Pathak, Baiqi Li, Jiayao Li, Xide Xia, Graham Neubig, Pengchuan
Zhang, and Deva Ramanan. 2024. Evaluating Text-to-Visual Generation with Image-
to-Text Generation. arXiv preprint arXiv:2404.01291 (2024).

Haoran Mo, Xusheng Lin, Chengying Gao, and Ruomei Wang. 2024. Text-based Vector
Sketch Editing with Image Editing Diffusion Prior. In Proc. ICME. IEEE, 1–6.

Kunato Nishina and Yusuke Matsui. 2024. SVGEditBench: A Benchmark Dataset
for Quantitative Assessment of LLM’s SVG Editing Capabilities. arXiv preprint
arXiv:2404.13710 (2024).

Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory
Chanan, Trevor Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, Alban Des-
maison, Andreas Kopf, Edward Yang, Zachary DeVito, Martin Raison, Alykhan
Tejani, Sasank Chilamkurthy, Benoit Steiner, Lu Fang, Junjie Bai, and Soumith Chin-
tala. 2019. PyTorch: An Imperative Style, High-Performance Deep Learning Library.
In Advances in Neural Information Processing Systems 32. Curran Associates, Inc.,
8024–8035. http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-
performance-deep-learning-library.pdf

Zhiyu Qu, Tao Xiang, and Yi-Zhe Song. 2023. SketchDreamer: Interactive Text-
Augmented Creative Sketch Ideation. In Proc. BMVC.

Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini
Agarwal, Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, Gretchen
Krueger, and Ilya Sutskever. 2021. Learning transferable visual models from natural
language supervision. In International Conference on Machine Learning (ICML).
PMLR, 8748–8763.

Leo Sampaio Ferraz Ribeiro, Tu Bui, John Collomosse, and Moacir Ponti. 2020. Sketch-
former: Transformer-based Representation for Sketched Structure. In Proceedings of
the IEEE/CVF conference on computer vision and pattern recognition. 14153–14162.

Juan A Rodriguez, Abhay Puri, Shubham Agarwal, Issam H Laradji, Sai Rajeswar, David
Vazquez, Christopher Pal, andMarco Pedersoli. 2025. StarVector: Generating Scalable
Vector Graphics Code from Images and Text. In Proc. AAAI, Vol. 39. 29691–29693.

Robin Rombach, Andreas Blattmann, Dominik Lorenz, Patrick Esser, and Björn Ommer.
2022. High-resolution image synthesis with latent diffusion models. In Proceedings
of the IEEE/CVF conference on computer vision and pattern recognition. 10684–10695.

Patsorn Sangkloy, Nathan Burnell, Cusuh Ham, and James Hays. 2016. The Sketchy
Database: Learning to Retrieve Badly Drawn Bunnies. ACM Transactions on Graphics
(proceedings of SIGGRAPH) (2016).

Zecheng Tang, Chenfei Wu, Zekai Zhang, Mingheng Ni, Shengming Yin, Yu Liu,
Zhengyuan Yang, Lijuan Wang, Zicheng Liu, Juntao Li, and Duan Nan. 2024.
StrokeNUWA: Tokenizing Strokes for Vector Graphic Synthesis. arXiv preprint
arXiv:2401.17093 (2024).

Gemini Team, Rohan Anil, Sebastian Borgeaud, Jean-Baptiste Alayrac, Jiahui Yu,
Radu Soricut, Johan Schalkwyk, Andrew M Dai, Anja Hauth, Katie Millican, et al.
2023. Gemini: a family of highly capable multimodal models. arXiv preprint
arXiv:2312.11805 (2023).

Yael Vinker, Yuval Alaluf, Daniel Cohen-Or, and Ariel Shamir. 2023. Clipascene:
Scene sketching with different types and levels of abstraction. In Proceedings of the
IEEE/CVF International Conference on Computer Vision. 4146–4156.

Yael Vinker, Ehsan Pajouheshgar, Jessica Y. Bo, Roman Christian Bachmann, Amit Haim
Bermano, Daniel Cohen-Or, Amir Zamir, and Ariel Shamir. 2022. CLIPasso:
Semantically-Aware Object Sketching. ACM Trans. Graph. 41, 4, Article 86 (jul
2022), 11 pages. doi:10.1145/3528223.3530068

Yael Vinker, Tamar Rott Shaham, Kristine Zheng, Alex Zhao, Judith E Fan, and Antonio
Torralba. 2024. SketchAgent: Language-Driven Sequential Sketch Generation. arXiv
preprint arXiv:2411.17673 (2024).

JiuniuWang, Hangjie Yuan, DayouChen, Yingya Zhang, XiangWang, and Shiwei Zhang.
2023. Modelscope text-to-video technical report. arXiv preprint arXiv:2308.06571
(2023).

SA Conference Papers ’25, December 15–18, 2025, Hong Kong, Hong Kong.

http://arxiv.org/abs/1412.6980
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
https://doi.org/10.1145/3528223.3530068

AutoSketch: VLM-assisted Style-Aware Vector Sketch Completion • 11

Ronghuan Wu, Wanchao Su, and Jing Liao. 2024. Chat2SVG: Vector Graphics Gen-
eration with Large Language Models and Image Diffusion Models. arXiv preprint
arXiv:2411.16602 (2024).

Ronghuan Wu, Wanchao Su, Kede Ma, and Jing Liao. 2023. IconShop: Text-Guided
Vector Icon Synthesis with Autoregressive Transformers. ACM Transactions on
Graphics (TOG) 42, 6 (2023), 1–14.

Ximing Xing, Juncheng Hu, Guotao Liang, Jing Zhang, Dong Xu, and Qian Yu. 2024.
Empowering LLMs to Understand and Generate Complex Vector Graphics. arXiv
preprint arXiv:2412.11102 (2024).

XiMing Xing, Chuang Wang, Haitao Zhou, Jing Zhang, Qian Yu, and Dong Xu. 2023.
DiffSketcher: Text Guided Vector Sketch Synthesis through Latent Diffusion Models.
In Thirty-seventh Conference on Neural Information Processing Systems. https:
//openreview.net/forum?id=CY1xatvEQj

An Yang, Anfeng Li, Baosong Yang, Beichen Zhang, Binyuan Hui, Bo Zheng, Bowen
Yu, Chang Gao, Chengen Huang, Chenxu Lv, et al. 2025. Qwen3 technical report.
arXiv preprint arXiv:2505.09388 (2025).

Lvmin Zhang, Anyi Rao, and Maneesh Agrawala. 2023. Adding conditional control to
text-to-image diffusion models. In Proc. ICCV. 3836–3847.

Tao Zhou, Chen Fang, Zhaowen Wang, Jimei Yang, Byungmoon Kim, Zhili Chen,
Jonathan Brandt, and Demetri Terzopoulos. 2018. Learning to Sketch with Deep Q
Networks and Demonstrated Strokes. arXiv preprint arXiv:1810.05977 (2018).

Bocheng Zou, Mu Cai, Jianrui Zhang, and Yong Jae Lee. 2024. Vgbench: Evaluating
large language models on vector graphics understanding and generation. arXiv
preprint arXiv:2407.10972 (2024).

SA Conference Papers ’25, December 15–18, 2025, Hong Kong, Hong Kong.

https://openreview.net/forum?id=CY1xatvEQj
https://openreview.net/forum?id=CY1xatvEQj

	Abstract
	1 Introduction
	2 Related Work
	2.1 Vector Sketch Generation
	2.2 Sketch Styles
	2.3 LLM-based Sketch and SVG Editing

	3 Overview
	4 Stage 1: Content-centric Sketch Completion
	4.1 Prompt Augmentation
	4.2 Stroke Optimization for Completion

	5 VLM-based Sketch Style Adjustment
	6 Experiment
	6.1 Implementation Details
	6.2 Comparison with Existing Methods
	6.3 Diverse Sketch Scenario
	6.4 Ablation Study

	7 Limitations and Future Work
	8 Conclusion
	Acknowledgments
	References

